Notes and references
1 For recent reviews in this field see: (a) A. K. Samland, M. Rale,
G. A. Sprenger and W.-D. Fessner, ChemBioChem, 2011, 12,
1454–1474; (b) P. Clapes and W.-D. Fessner, Stereoselective Synthesis,
Science of Synthesis, Thieme, 2011, vol. 2, pp. 677–734; (c) W.-D.
Fessner, in Asymmetric Organic Synthesis with Enzymes, ed. W.-D.
Fessner and T. Anthonsen, Wiley, 2008, pp. 275–318.
2 For recent reviews in this field see: (a) R. N. Monrad and
R. Madsen, Tetrahedron, 2011, 67, 8825–8850; (b) P. Vogel and
I. Robina, in Comprehensive Glycoscience, ed. J. P. Kamerling,
Elsevier, 2007, vol. 1, pp. 261–310.
3 For an overview in this field see: (a) R. Mahrwald, Aldol Reactions,
Springer, 2009; (b) M. Markert and R. Mahrwald, Chem.–Eur. J.,
2008, 14, 40–48.
4 M. Markert, M. Mulzer, B. Schetter and R. Mahrwald, J. Am.
Chem. Soc., 2007, 129, 7258–7259.
5 K. Rohr and R. Mahrwald, Org. Lett., 2011, 13, 1878–1880.
6 Ribose consists in solution at rt of a mixture of furanoid and
pyranoid structures of appr. 2/8.
7 K. Rohr and R. Mahrwald, Adv. Synth. Catal., 2008, 350,
2877–2880.
8 With the sole exception of reaction of 2-acetamido-glyceraldehyde
with tert-butyloxalacetate: M. Miljkovic and P. Hagel, Carbohydr.
Res., 1985, 141, 213–220.
Scheme 5 Aldol reactions of ribose to different acetoacetic esters
2b–f. Reaction conditions: 1 mmol carbohydrate, 1.5 mmol ethyl
acetoacetate 2a, 20 mol% iPr2NEt, 25 mol% 2-pyridone, 0.5 ml
a
DMSO, rt, 60–96 h. Internal syn/anti ratio.
9 M.-C. Scherrmann, Top. Curr. Chem., 2010, 295, 1–18.
10 (a) P. M. Foley, A. Phimphachanh, E. S. Beach, J. B. Zimmerman and
P. T. Anastas, Green Chem., 2011, 13, 321–332; (b) A. Cavezza,
C. Boulle, A. Gueguiniat, P. Pichaud, S. Trouille, L. Ricard and
M. Dalko-Csiba, Bioorg. Med. Chem. Lett., 2009, 19, 845–849;
(c) S. Norsikian, J. Zeitouni, S. Rat, S. Gerard and A. Lubineau,
Carbohydr. Res., 2007, 342, 2716–2728; (d) J. Zeitouni, S. Norsikian and
A. Lubineau, Tetrahedron Lett., 2004, 45, 7761–7763; (e) Y. Hersant,
R. Abou-Jneid, Y. Canac, A. Lubineau, M. Philippe, D. Semeria,
X. Radisson and M.-C. Scherrmann, Carbohydr. Res., 2004, 339,
741–745; (f) I. Riemann, M. A. Papadopoulos, M. Knorst and
W.-D. Fessner, Aust. J. Chem., 2002, 55, 147–154; (g) F. Rodrigues,
Y. Canac and A. Lubineau, Chem. Commun., 2000, 2049–2050.
11 (a) B. V. S. Reddy, C. D. Vani, Z. Begum, J. S. Yadav and
T. P. Rao, Synthesis, 2011, 168–172; (b) L. Nagarapu,
V. N. Cheemalapati, S. Karnakanti and R. Bantu, Synthesis,
2010, 3374–3378.
These findings indicate that the internal diastereoselectivity
is influenced by substituents of the acetoacetic esters deployed.
Moreover these results demonstrate that this new transformation
can further be extended to 1.3-dicarbonyl compounds.
In summary, we have developed an organocatalyzed aldol
addition of unprotected carbohydrates to 1.3-dicarbonyl com-
pounds without using the classical tedious protecting and depro-
tecting procedure. These investigations show great advantages in
terms of time and atom economy. The successful execution of this
process is based on a dual activation by tertiary amines and
2-hydroxypyridine. Also, this operationally simple transformation
mimics aldolase-catalyzed transformations, which were identified in
many biochemical processes. Further optimization and enlargement
of this methodology to more general C–C bond formation pro-
cesses of unprotected carbohydrates are underway.
12 B. Capon, Chem. Rev., 1969, 69, 407–498.
13 M. Pfaffe and R. Mahrwald, Org. Lett., 2012, 14, 792–795.
14 (a) W. T. Smith and T. L. Hearn, Bioorg. Chem., 1972, 2, 39–43;
(b) P. R. Rony, J. Am. Chem. Soc., 1968, 90, 2824; (c) C. G. Swain
and J. F. Brown, J. Am. Chem. Soc., 1952, 74, 2534–2537;
(d) C. G. Swain and J. F. Brown, J. Am. Chem. Soc., 1952, 74,
2538–2543.
The authors thank Deutsche Forschungsgemeinschaft,
Bayer-Schering Pharma AG, Bayer Services GmbH, BASF
AG, and Sasol GmbH for financial support.
c
5306 Chem. Commun., 2012, 48, 5304–5306
This journal is The Royal Society of Chemistry 2012