Journal of the American Chemical Society
Communication
Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol.
5, pp 999−1035.
1 and alkynes 4 to demonstrate the generality of the unique
site-selectivity of insertion (Table 2). Even the ortho-substituted
derivative 1d showed the same site-selectivity to give
dihydronaphthalene 5d in 79% yield (entry 3). The presence
of electron-donating methoxy and -withdrawing trifluoromethyl
groups on the benzene ring scarcely affected the reaction
(entries 4 and 5). A chloro group remained intact (entry 6).
High regioselectivities were observed with unsymmetrical
alkynes bearing one aryl or vinyl substituent (entries 8 and
9), which was located at the β-position (next to the hydroxyl
group) of the resulting dihydronaphthalene skeleton. On the
other hand, the unsymmetrical dialkyl-substituted alkyne 4e
gave a mixture of regioisomers with the ratio of 75:25 (entry
10). The regioselectivities observed with these unsymmetrical
alkynes were similar to those of intermolecular 1,2-addition of
o-carbonyl-substituted arylrhodium species onto alkynes.17 An
unprotected hydroxyl group and a pyridine moiety were
allowed in the alkynes (entries 11 and 12). Insertion of terminal
alkynes such as phenylethyne failed due to rapid self-
oligomerization.
(4) (a) Kitaura, Y.; Matsuura, T. Tetrahedron 1971, 27, 1597.
(b) Arnold, B. J.; Sammes, P. G.; Wallace, T. W. J. Chem. Soc., Perkin
Trans. 1 1974, 409.
(5) Caubere, P.; Derozier, N.; Loubinoux, B. Bull. Soc. Chim. Fr.
1971, 302.
(6) Cava, M. P.; Muth, K. J. Am. Chem. Soc. 1960, 82, 652.
(7) For proximal cleavage of benzocyclobutenols possessing an
anion-stabilizing group at the 6-position, see: (a) Stevens, R. V.;
Bisacchi, G. S. J. Org. Chem. 1982, 47, 2396. (b) Gokhale, A.; Schiess,
P. Helv. Chim. Acta 1998, 81, 251.
(8) For proximal cleavage of benzocyclobutenols coordinating to
chromium(0) in an η6-fashion, see: Brands, M.; Wey, H. G.;
Butenschon, H. J. Chem. Soc., Chem. Commun. 1991, 1541.
̈
(9) For reviews on o-quinodimethanes, see: (a) Oppolzer, W.
Synthesis 1978, 793. (b) Charlton, J. L.; Alauddin, M. M. Tetrahedron
1987, 43, 2873. (c) Segura, J. L.; Martín, N. Chem. Rev. 1999, 99,
3199.
(10) (a) Arnold, B. J.; Sammes, P. G. J. Chem. Soc., Chem. Commun.
1972, 30. (b) Arnold, B. J.; Sammes, P. G.; Wallace, T. W. J. Chem.
Soc., Perkin Trans. 1 1974, 415. (c) Choy, W.; Yang, H. J. Org. Chem.
1988, 53, 5796. See also ref 9.
(11) (a) Kametani, T.; Katoh, Y.; Fukumoto, K. J. Chem. Soc., Perkin
Trans 1 1974, 1712. (b) Fitzgerald, J. J.; Michael, F. E.; Olofson, R. A.
Tetrahedron Lett. 1994, 35, 9191. (c) Kraus, G. A.; Zhao, G. Synlett
1995, 541. (d) Takemura, I.; Imura, K.; Matsumoto, T.; Suzuki, K.
Org. Lett. 2004, 6, 2503.
In conclusion, we have demonstrated that [Rh(OH)(cod)]2
induces ring opening of benzocyclobutenols with site-selective
cleavage of the proximal C(sp2)−C(sp3) bond. The site-
selectivity is complementary to that of the conventional ring-
opening reactions. A new alkyne insertion reaction constructing
a dihydronaphthalene framework was developed based upon
the unique ring opening.
(12) (a) Tomioka, H.; Ichihashi, M.; Yamamoto, K. Tetrahedron Lett.
1995, 36, 5371. (b) Zhang, X.; Foote, C. S. J. Org. Chem. 1994, 59,
5235.
ASSOCIATED CONTENT
* Supporting Information
(13) Matsuda, T.; Makino, M.; Murakami, M. Bull. Chem. Soc. Jpn.
2005, 78, 1528.
■
S
(14) The proximal C(sp2)−C(sp3) bond of benzocyclobutenols was
cleaved also in the palladium-catalyzed reaction of benzocyclobutenols
with bromobenzenes: Chtchemelinine, A.; Rosa, D.; Orellana, A. J.
Org. Chem. 2011, 76, 9157.
Experimental procedures and spectral data for new compounds.
This material is available free of charge via the Internet at
(15) Intramolecular alkene insertion into a proximal C(sp2)−C(sp2)
bond of benzocyclobutenones has been recently reported: Xu, T.;
Dong, G. Angew. Chem., Int. Ed. 2012, 51, 7567.
AUTHOR INFORMATION
Corresponding Author
■
(16) (a) Zhao, P.; Incarvito, C. D.; Hartwig, J. F. J. Am. Chem. Soc.
2006, 128, 3124. For rhodium-catalyzed reactions of tert-alcohols
through β-aryl eliminations, see: (b) Nishimura, T.; Katoh, T.;
Hayashi, T. Angew. Chem., Int. Ed. 2007, 46, 4937. (c) Uto, T.;
Shimizu, M.; Ueura, K.; Tsurugi, H.; Satoh, T.; Miura, M. J. Org. Chem.
2008, 73, 298. (d) Seiser, T.; Cathomen, G.; Cramer, N. Synlett 2010,
1699.
(17) (a) Shintani, R.; Okamoto, K.; Hayashi, T. Chem. Lett. 2005, 34,
1294. (b) Matsuda, T.; Makino, M.; Murakami, M. Chem. Lett. 2005,
34, 1416.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported in part by a Grant-in-Aid for Scientific
Research on Innovative Areas “Molecular Activation Directed
toward Straightforward Synthesis” and Grant-in-Aid for
Scientific Research (B) from MEXT and The Asahi Glass
Foundation.
REFERENCES
■
(1) For reviews, see: (a) van der Boom, M. E.; Milstein, D. Chem.
Rev. 2003, 103, 1759. (b) Miura, M.; Satoh, T. Top. Organomet. Chem.
2005, 14, 1. (c) Kondo, T.; Mitsudo, T. Chem. Lett. 2005, 34, 1462.
̌
(d) Necas, D.; Kotora, M. Curr. Org. Chem. 2007, 11, 1566. (e) Park,
Y. J.; Park, J.-W.; Jun, C.-H. Acc. Chem. Res. 2008, 41, 222. (f) Tobisu,
M.; Chatani, N. Chem. Soc. Rev. 2008, 37, 300. (g) Nakao, Y.; Hiyama,
T. Pure Appl. Chem. 2008, 80, 1097. (h) Seiser, T.; Cramer, N. Org.
Biomol. Chem. 2009, 7, 2835. (i) Murakami, M.; Matsuda, T. Chem.
Commun. 2011, 47, 1100. (j) Aïssa, C. Synthesis 2011, 3389.
(2) Durst, T.; Breau, L. In Comprehensive Organic Synthesis; Trost, B.
M., Fleming, I., Paquette, L. A., Eds.; Pergamon: Oxford, 1991; Vol. 5,
pp 675−697.
(3) (a) Rondan, N. G.; Houk, K. N. J. Am. Chem. Soc. 1985, 107,
2099. (b) Murakami, M.; Miyamoto, Y.; Ito, Y. J. Am. Chem. Soc. 2001,
123, 6441. For a general review on charge-accelerated rearrangements,
see: (c) Bronson, J. J.; Danheiser, R. L. In Comprehensive Organic
17504
dx.doi.org/10.1021/ja309013a | J. Am. Chem. Soc. 2012, 134, 17502−17504