S. R. Shah et al.
SHORT COMMUNICATION
Wiley & Sons, New York, 1986; b) I. J. Turchi, M. J. S. Dewar,
Chem. Rev. 1975, 75, 389; c) D. C. Palmar (Ed.), The Chemistry
of Heterocyclic Compounds Vol. 60: Oxazoles – Synthesis Reac-
tions and Spectroscopy: Parts A and B, John Wiley & Sons,
Hoboken, NJ, 2003 and 2004.
equivalent of the Vilsmeier reagent to generate intermediate
11. Reductive dechlorination (by an X-philic reaction)[16]
generates 12 that is protonated to 13 and partially hy-
drolyzed to 14. Ring closure of 14 followed by hydrolysis
finally leads to oxazole 2.[17] The observed side products,
the benzoic acids, could be formed by hydrolysis of interme-
diates 10–14 before heterocyclization. Donor substituents
resulted in lower yields of the desired product, as seen by
comparing 2b and 2c to 2a, whereas halogen substituents
led to higher yields of products 2d and 2e (Table 1).
[2]
For reports on oxazole natural products, see: a) J. W. Blunt,
B. R. Copp, M. H. G. Munro, P. T. Northcote, M. R. Prinsep,
Nat. Prod. Rep. 2011, 28, 196; b) Z. Jin, Nat. Prod. Rep. 2009,
26, 382; c) Z. Jin, Nat. Prod. Rep. 2006, 23, 464; d) V. S. C.
Yeh, Tetrahedron 2004, 60, 11995; for recent syntheses triggered
by oxazole natural products, see: e) C. D. Hopkins, P. Wipf,
Nat. Prod. Rep. 2009, 26, 585; f) J. Zhang, E. A. Polishchuk, J.
Chen, M. A. Ciufolini, J. Org. Chem. 2009, 74, 9140; g) M.
Lachia, C. J. Moody, Nat. Prod. Rep. 2008, 25, 227; h) G. Pat-
tenden, N. J. Ashweek, C. A. G. Baker-Glenn, J. Kempson,
G. M. Walker, J. G. K. Yee, Org. Biomol. Chem. 2008, 6, 1478;
i) J. Deeley, A. Bertram, G. Pattenden, Org. Biomol. Chem.
2008, 6, 1994.
a) J. Mazuela, P. Tolstoy, O. Pamies, P. G. Andersson, M. Dieg-
uez, Org. Biomol. Chem. 2011, 9, 941; b) N. A. Strotman, H. R.
Chobanian, Y. Guo, J. He, J. E. Wilson, Org. Lett. 2010, 12,
3578.
a) D.-M. Gou, Y.-C. Liu, C.-S. Chen, J. Org. Chem. 1983, 58,
1287; b) A. M. S. Soares, S. P. G. Costa, M. S. T. Gonçalves,
Tetrahedron 2010, 66, 8189.
a) S. Bräse, K. Banert (Eds.), Organic Azides: Syntheses and
Applications, Wiley, Chichester, 2010; b) S. Bräse, C. Gil, K.
Knepper, V. Zimmermann, Angew. Chem. 2005, 117, 5320; An-
gew. Chem. Int. Ed. 2005, 44, 5188; c) E. V. F. Scriven, K.
Turnbull, Chem. Rev. 1988, 88, 297.
For reviews, see: a) T. Patonay, K. Konya, E. Juhasz-Toth,
Chem. Soc. Rev. 2011, 40, 2797; b) X. Fan, Y. Zhang, Tetrahe-
dron Lett. 2002, 43, 1863.
a) P. Wipf, T. H. Graham, Org. Biomol. Chem. 2005, 3, 31; b)
C. T. Walsh, ChemBioChem 2002, 3, 124.
a) E. F. Flegeau, M. E. Popkin, M. F. Greaney, Org. Lett. 2008,
10, 2717; b) M. Keni, J. Tepe, J. Org. Chem. 2005, 70, 4211; c)
K. J. Hodgetti, M. J. Kershaw, Org. Lett. 2002, 4, 2905; d) the
results of our study on these compounds will be reported else-
where.
a) P. Jadav, R. Bahekar, S. R. Shah, D. Patel, A. Joharapurkar,
S. Kshirsagar, M. Jain, M. Shaikh, K. V. V. M. Sairam, Bioorg.
Med. Chem. Lett. 2012, 22, 3516; b) D. Patel, M. Jain, S. R.
Shah, R. Bahekar, P. Jadav, A. Joharpurkar, N. Dhanesha, M.
Shaikh, K. V. V. M. Sairam, P. Kapadnis, Bioorg. Med. Chem.
Lett. 2012, 22, 1111; c) D. Patel, M. Jain, S. R. Shah, R.
Bahekar, P. Jadav, B. Darji, Y. Siriki, D. Bandyopadhyay, A.
Joharapurakar, S. Kshirsagar, H. Patel, M. Shaikh, K. V. V. M.
Sairam, P. Patel, ChemMedChem 2011, 6, 1011; d) P. Zaware,
S. R. Shah, H. Pingali, P. Makadia, B. Thube, S. Pola, D. Patel,
P. Priyadarshini, D. Suthar, M. Shah, J. Jamili, K. V. V. M. Sai-
ram, S. Giri, L. Patel, H. Patel, H. Sudani, H. Patel, M. Jain,
P. Patel, R. Bahekar, Bioorg. Med. Chem. Lett. 2011, 21, 628;
e) P. Makadia, S. R. Shah, H. Pingali, P. Zaware, D. Patel, S.
Pola, B. Thube, P. Priyadarshini, D. Suthar, M. Shah, S. Giri,
C. Trivedi, M. Jain, P. Patel, R. Bahekar, Bioorg. Med. Chem.
2011, 19, 771.
Conclusions
In summary, a moderate yielding, one-pot synthesis of 2-
aryloxazole-4-carbaldehydes from readily available, inex-
pensive reagents involves an unprecedented rearrangement
occurring via 2H-azirines and constitutes a metal-free het-
eroannulation to functionalized 1,3-oxazoles.
[3]
[4]
[5]
Experimental Section
General Procedure for the Synthesis of 2-Aryloxazole-4-carb-
aldehydes 2a–e: In a 250-mL, two-necked, round-bottomed flask,
sodium azide (3.16 g, 55 mmol) was added in one portion to an
ice-cooled (10–15 °C), magnetically stirred solution of arylacyl
bromide (50 mmol) in DMF (50 mL). After stirring for 30 min, the
acyl bromide was completely converted into the phenacyl azide
(TLC 10% EtOAc in petroleum ether). Then, POCl3 (14 mL,
150 mmol) was added dropwise at 10–15 °C within 30–45 min. The
reaction mixture was allowed to attain room temperature (30 °C)
and was stirred for 3–4 h. After this time, the reaction mixture was
heated slowly to 90–95 °C and stirred for 2–3 h. The reaction mix-
ture was then cooled to room temperature and poured into an ice–
water mixture (500 mL). The mixture was stirred for 1 h and ex-
tracted with CHCl3 (3ϫ 100 mL). The organic layer was washed
with aqueous NaHCO3 solution to remove the formed benzoic acid
and with water and brine and then dried with anhydrous Na2SO4.
The solvent was removed, and the residue was chromatographed
(5% EtOAc/petroleum ether) to yield 2-aryloxazole-4-carbal-
dehydes 2a–e as crystalline products.
[6]
[7]
[8]
[9]
CCDC-817127 (for 2d) and -887930 (for 4d) contain the supple-
mentary crystallographic data for this paper. These data can be
obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif
Supporting Information (see footnote on the first page of this arti-
cle): Representative experimental procedures and spectral analyti-
cal data for all the compounds.
[10]
Some selected references: a) W. Zhou, C. Xie, J. Han, Y. Pan,
Org. Lett. 2012, 14, 4766; b) P. W. Davies, A. Cremonesi, L.
Dumitrescu, Angew. Chem. Int. Ed. 2011, 50, 8931; c) D. J. Rit-
son, C. Spiteri, J. E. Moses, J. Org. Chem. 2011, 76, 3519; d) I.
Cano, E. Àlvarez, M. C. Nicasio, P. J. Pèrez, J. Am. Chem. Soc.
2011, 133, 191; e) W. He, C. Li, L. Zhang, J. Am. Chem. Soc.
2011, 133, 8482; f) C. Wang, J. Zhang, S. Wang, J. Fan, Z.
Wang, Org. Lett. 2010, 12, 2338; g) N. C. Misra, H. Ila, J. Org.
Chem. 2010, 75, 5195; h) B. Shi, A. J. Blake, I. B. Campbell,
B. D. Judkins, C. J. Moody, Chem. Commun. 2009, 3291; i)
S. A. Ohnmacht, P. Mamone, A. J. Culshaw, M. F. Greaney,
Chem. Commun. 2008, 1241; j) V. J. Majo, P. T. Perumal, J. Org.
Chem. 1998, 63, 7136.
Acknowledgments
S. S. N. acknowledges an RFSMS fellowship from the University
Grants Commission New Delhi. Analytical support was extended
by the Zydus Research Centre, Ahmedabad and Sun Pharma Ad-
vanced Research Centre, Vadodara. Thanks are due to Mr. H. R.
Rawal (M. S. University) and Mr. V. Bhaskar Rao, (University of
Hyderabad) for elemental analyses.
[1] For reviews on oxazole chemistry, see: a) I. J. Turchi (Ed.), The
Chemistry of Heterocyclic Compounds Vol. 45: Oxazoles, John
266
www.eurjoc.org
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2013, 264–267