ChemComm
Communication
2007, 36, 151; (d) J. N. H. Reek and S. Otto, Dynamic
Combinatorial Chemistry, John Wiley & Sons, Hoboken, NJ, 2010;
(e) J.-M. Lehn and A. V. Eliseev, Science, 2001, 291, 2331.
2 (a) I. K. H. Leung, T. Brown Jr, C. J. Schofield and T. D. W. Claridge,
MedChemComm, 2011, 2, 390; (b) M. Demetriades, I. K. H. Leung,
R. Chowdhury, M. C. Chan, M. A. McDonough, K. K. Yeoh, Y.-M.
Tian, T. D. W. Claridge, P. J. Ratcliffe, E. C. Y. Woon and
C. J. Schofield, Angew. Chem., Int. Ed., 2012, 51, 6672.
3 (a) I. Huc and J.-M. Lehn, Proc. Natl. Acad. Sci. U. S. A., 1997,
94, 2106; (b) B. Klekota, M. H. Hammond and B. L. Miller, Tetra-
hedron Lett., 1997, 38, 8639; (c) J. R. Nitschke, Angew. Chem., Int. Ed.,
2004, 43, 3073; (d) V. Saggiomo and U. Lu¨ning, Tetrahedron Lett.,
2009, 50, 4663; (e) M. E. Belowich and J. F. Stoddart, Chem. Soc. Rev.,
2012, 41, 2003.
4 (a) R. Nguyen and I. Huc, Chem. Commun., 2003, 942; (b) A. Dirksen,
T. M. Hackeng and P. E. Dawson, Angew. Chem., Int. Ed., 2006,
45, 7581; (c) Z. Rodriguez-Docampo and S. Otto, Chem. Commun.,
2008, 5301; (d) A. G. Orrillo, A. M. Escalante and R. L. E. Furlan,
Chem. Commun., 2008, 5298; (e) S. R. Beeren, M. Pittelkow and
J. K. M. Sanders, Chem. Commun., 2011, 47, 7359; ( f ) V. T. Bhat,
A. M. Caniard, T. Luksch, R. Brenk, D. J. Campopiano and
M. F. Greaney, Nat. Chem., 2010, 2, 490.
Fig. 4 (a) The studied disulfide based DCL. (b) Graph showing the effect
of 10 mol% diselenide (1)2 on the oxidation of thiol (6) in the disulfide DCL
at pH 7.0. All libraries were studied at 0.5 mM.
5 (a) S. Otto, R. L. E. Furlan and J. K. M. Sanders, J. Am. Chem. Soc.,
¨
2000, 122, 12063; (b) O. Ramstrom and J.-M. Lehn, ChemBioChem,
2000, 1, 41; (c) S. Otto, R. L. E. Furlan and J. K. M. Sanders, Science,
2002, 297, 590; (d) B. Brisig, J. K. M. Sanders and S. Otto, Angew.
Chem., Int. Ed., 2003, 42, 1270; (e) S. Otto and S. Kubik, J. Am. Chem.
disappeared as the catalyst was released. Based on these
observations, it appears that the catalytic effect originated from
a reaction sequence where a thiol reacts with the diselenide to
generate selenenylsulfide (6)2(1)1 which subsequently reacts
efficiently with another thiol to give a disulfide.
´
Soc., 2003, 125, 7804; ( f ) L. Vial, R. F. Ludlow, J. Leclaire, R. Perez-
´
Fernandez and S. Otto, J. Am. Chem. Soc., 2006, 128, 10253; (g) E.-K.
Bang, M. Lista, G. Sforazzini, N. Sakai and S. Matile, Chem. Sci.,
2012, 3, 1752; (h) A. R. Stefankiewicz and J. K. M. Sanders, Chem.
Commun., 2013, 49, 5820; (i) L. I. James, J. E. Beaver, N. W. Rice and
M. L. Waters, J. Am. Chem. Soc., 2013, 135, 6450.
To conclude, we have demonstrated for the first time that
diselenide based DCLs equilibrate under thermodynamic con-
trol at neutral pH and that combinations of diselenide and
disulfide based DCLs give mixtures where disulfides, disele-
nides and selenenylsulfides coexist. We have also shown that
diselenides catalyse the formation of disulfide based DCLs at
physiological pH. These discoveries pave the way to form DCLs
with diselenides and disulfides at truly physiological pH, and
currently we are studying how addition of templates affects the
distribution of library members under such conditions.
This work was supported by the Lundbeck Foundation. We
thank Assoc. Prof. Lars Henriksen and Dr Sophie R. Beeren for
useful discussions.
6 R. E. Huber and R. S. Criddle, Arch. Biochem. Biophys., 1967,
122, 164.
7 D. Steinmann, T. Nauser and W. H. Koppenol, J. Org. Chem., 2010,
75, 6696.
8 J. C. Pleasant, W. Guo and D. L. Rabenstein, J. Am. Chem. Soc.,
1989, 111, 6553.
9 R. Singh and G. M. Whitesides, J. Org. Chem., 1991, 56, 6931.
10 K. A. Caldwell and A. L. Tappel, Arch. Biochem. Biophys., 1965,
112, 196.
11 (a) J. Beld, K. J. Woycechowsky and D. Hilvert, Biochemistry, 2007,
46, 5382; (b) J. Beld, K. J. Woycechowsky and D. Hilvert, ACS Chem.
Biol., 2010, 5, 177; (c) J. Beld, K. J. Woycechowsky and D. Hilvert,
Biochemistry, 2008, 47, 6985; (d) J. C. Lukesh III, B. VanVeller and
R. T. Raines, Angew. Chem., Int. Ed., 2013, 52, 12901; (e) A. D. de
Araujo, B. Callaghan, S. T. Nevin, N. L. Daly, D. J. Craik, M. Moretta,
G. Hopping, M. J. Cristie, D. J. Adams and P. F. Alewood, Angew.
Chem., Int. Ed., 2011, 50, 6527; ( f ) A. Walewska, M. Zhang,
J. J. Skalicky, D. Yoshikami, B. M. Olivera and G. Bulaj, Angew.
Chem., Int. Ed., 2009, 48, 2221.
12 M. Muttenthaler, S. T. Nevin, A. A. Grishin, S. T. Ngo, P. T. Choy,
N. L. Daly, S.-H. Hu, C. J. Armishaw, C.-I. A. Wang, R. J. Lewis,
J. L. Martin, P. G. Noakes, D. J. Craik, D. J. Adams and P. F. Alewood,
J. Am. Chem. Soc., 2010, 132, 3514.
Notes and references
1 (a) S. Ladame, Org. Biomol. Chem., 2008, 6, 219; (b) P. T. Corbett,
J. Leclaire, L. Vial, K. R. West, J.-L. Wietor, J. K. M. Sanders and
S. Otto, Chem. Rev., 2006, 106, 3652; (c) J.-M. Lehn, Chem. Soc. Rev., 13 J. Atcher and I. Alfonso, RSC Adv., 2013, 3, 25605.
3718 | Chem. Commun., 2014, 50, 3716--3718
This journal is ©The Royal Society of Chemistry 2014