10.1002/chem.202001902
Chemistry - A European Journal
COMMUNICATION
Gassman, D. A. Singleton, J. Am. Chem. Soc. 1984, 106, 7993-7994; c)
C. Bergquist, B. M. Bridgewater, C. J. Harlan, J. R. Norton, R. A. Friesner,
G. Parkin, J. Am. Chem. Soc. 2000, 122, 10581-10590; d) M. Yasuda, T.
Somyo, A. Baba, Angew. Chem. Int. Ed. 2006, 45, 793-796; e) M. Vayer,
R. Guillot, C. Bour, V. Gandon, Chem Eur. J. 2017, 23, 13901-13905.
[12] a) V. Gutmann, Coordination Chemistry Reviews 1976, 18, 225-255; b)
H. Großekappenberg, M. Reißmann, M. Schmidtmann, T. Mꢁller,
Organometallics 2015, 34, 4952-4958; c) M. A. Beckett, D. S.
Brassington, S. J. Coles, M. B. Hursthouse, Inorg. Chem. Commun. 2000,
3, 530-533; d) G. C. Welch, L. Cabrera, P. A. Chase, E. Hollink, J. D.
Masuda, P. R. Wei, D. W. Stephan, Dalton Trans. 2007, 3407-3414; e)
J. Alarcón-Espósito, R. Contreras, R. A. Tapia, P. R. Campodónico,
Chem. Eur. J. 2016, 22, 13347-13351.
[13] J. J. Montalvo-Acosta, M. Dryzhakov, E. Richmond, M. Cecchini, J.
Moran, under revisions.
[14] a) S. Estopiña-Durán, L. J. Donnelly, E. B. Lclean, B. M. Hockin, A. M. Z.
Slawin, J. E. Taylor, Chem. Eur. J. 2019, 25, 3950-3956; b) E. Wolf, E.
Richmond, J. Moran, Chem. Sci. 2015, 6, 2501-2505.
[15] T. Beringhelli, D. Maggioni, G. D’Alfonso, Organometallics 2001, 20,
4927-4938.
[16] The possibility that the inhibiting effect of DTBP might be due to
poisoning of the boronic acid by alkoxide generated from deprotonation
of HFIP seems unlikely due to the following experiment: we found the
boronic acid catalyzed reaction also occurred in the absence of DTBP in
the aprotic solvent DCE under slightly higher temperatures. It is also
inhibited by DTBP under these conditions, where no alkoxides are
present (see the Supporting Information for more information).
[17] A. N. J. Moore, D. D. M. Wayner, Can. J. Chem. 1999, 77, 681-686.
[18] A. Shokri, X.-B. Wang, S. R. Kass, J. Am. Chem. Soc. 2013, 135, 9525-
9530.
Keywords: boronic acid • hexafluoroisopropanol • Bønsted acid
• Lewis acid • dual H-bond
[1]
[2]
For reviews on boronic acid catalysis, see: a) E. Dimitrijeviꢀ, M. S. Taylor,
ACS Catal. 2013, 3, 945-962; b) H. C. Zhang, D. G. Hall, Aldrichim. Acta.
2014, 47, 41-51; c) D. G. Hall, Chem. Soc. Rev. 2019, 48, 3475-3496.
For catalytic activation of alcohols by boronic acids, see: a) J. A.
McCubbin, O. V. Krokhin, Tetrahedron Lett. 2010, 51, 2447-2449; b) J.
A. McCubbin, H. Hosseini, O. V. Krokhin, J. Org. Chem. 2010, 75, 959-
962; c) J. A. McCubbin, C. Nassar, O. V. Krokhin, Synthesis 2011, 19,
3152-3160; d) H. Zheng, M. Lejkowski, D. G. Hall, Chem. Sci. 2011, 2,
1305-1310; e) J. A. McCubbin, C. Nassar, O. V. Krokhin, Synthesis 2011,
3152-3160; f) H. C. Zheng, S. Ghanbari, S. Nakamura, D. G. Hall, Angew.
Chem. Int. Ed. 2012, 51, 6187-6190; g) X. B. Mo, J. Yakiwchuk, J.
Dansereau, J. A. McCubbin, D. G. Hall, J. Am. Chem. Soc. 2015, 137,
9694-9703; h) C. L. Ricardo, X. B. Mo, J. A. McCubbin, D. G. Hall, Chem.
Eur. J. 2015, 21, 4218-4223; i) W.-B. Tang, K.-S. Cao, S.-S. Meng, W.-
H. Zheng, Synthesis 2017, 49, 3670-3675; j) H. T. Ang, J. P. G. Rygus,
D. G. Hall, Org. Biomol. Chem. 2019, 17, 6007-6014.
[3]
[4]
For catalytic activation of oximes by boronic acids, see: a) S.
Chandrasekhar, K. Gopalaiah, Tetrahedron Lett. 2002, 43, 2455-2457;
b) X. B. Mo, T. D. R. Morgan, H. T. Ang, D. G. Hall, J. Am. Chem. Soc.
2018, 140, 5264-5271
For catalytic activation of carboxylic acids by boronic acids, see: a) R. M.
Al-Zoubi, O. Marion, D. G. Hall, Angew. Chem. Int. Ed. 2008, 47, 2876-
2879; b) A. Sakakura, T. Ohkubo, R. Yamashita, M. Akakura, K. Ishihara,
Org. Lett. 2011, 13, 892-895; c) N. Gernigon, R. M. Al-Zoubi, D. G. Hall,
J. Org. Chem. 2012, 77, 8386-8400; d) C. Wang, H. Z. Yu, Y. Fu, Q. X.
Guo, Org. Biomol. Chem. 2013, 11, 2140-2146; e) N. Gernigon, H. C.
Zheng, D. G. Hall, Tetrahedron Lett. 2013, 54, 4475-4478; f) K. Ishihara,
Y. H. Lu, Chem. Sci. 2016, 7, 1276-1280; g) K. Wang, Y. H. Lu, K.
Ishihara, Chem. Commun. 2018, 54, 5410-5413; h) S. Arkhipenko, M. T.
Sabatini, A. S. Batsanov, V. Karaluka, T. D. Sheppard, H. S. Rzepa, A.
Whiting, Chem. Sci. 2018, 9, 1058-1072.
[18] a) K. M. Diemoz, A. K Franz, J. Org. Chem. 2019, 84, 1126-1138; b) G.
Lv, X. Sun, C. Zhang, M. Lei, Atmos. Chem. Phys. 2019, 19, 2833-2844.
[5]
[6]
a) J. Liu, H. Yao, C. Wang, ACS Catal. 2018, 8, 9376-9381; b) H. Yao, J.
Liu, C. Wang, Org. Biomol. Chem. 2019, 17, 1901-1905.
For recent reviews on HFIP, see: a) T. Sugiishi, M. Matsugi, H.
Hamamoto, H. Amii, RSC Adv. 2015, 5, 17269-17282; b) J. Wencel-
Delord, F. Colobert, Org. Chem. Front. 2016, 3, 394-400; c) I. Colomer,
A. E. R. Chamberlain, M. B. Haughey, T. J. Donohoe, Nat. Rev. Chem.
2017, 1, 0088; d) S. K. Sinha, T. Bhattacharya, D. Maiti, React. Chem.
Engl. 2019, 4, 244-253.
[7]
For recent examples of enhancement of reactivity via the use of HFIP,
see: a) A. Berkessel, J. A. Adrio, D. Hüttenhain, J. M. Neudörfl, J. Am.
Chem. Soc. 2006, 128, 8421-8426; b) A. Berkessel, J. A. Adrio, J. Am.
Chem. Soc. 2006, 128, 13412-13420; c) H. F. Motiwala, C. Fehl, S.-W.
Li, E. Hirt, P. Porubsky, J. Aubé, J. Am. Chem. Soc. 2013, 135, 9000-
9009; d) R. H. Vekariya, J. Aubé, Org. Lett. 2016, 18, 3534-3537; e) X.
Zeng, S. Liu, B. Xu, Org. Lett. 2016, 18, 4770-4773; f) I. Colomer, R. C.
Barcelos, K. E. Christensen, T. J. Donohoe, Org. Lett. 2016, 18, 5880-
5883; g) T. Kamitanaka, K. Morimoto, K. Tsuboshima, D. Koseki, H.
Takamuro, T. Dohi, Y. Kita, Angew. Chem. Int. Ed. 2016, 55, 15535-
15538; h) I. Colomer, C. Batchelor-McAuley, B. Odell, T. J. Donohoe, R.
G. Compton, J. Am. Chem. Soc. 2016, 138, 8855-8861; i) D. Lebœuf, L.
Marin, B. Michelet, A. Perez-Luna, R. Guillot, E. Schulz, V. Gandon,
Chem. Eur. J. 2016, 22, 16165-16171; j) V. D. Vukoviꢀ, E. Richmond, E.
Wolf, J. Moran, Angew. Chem. Int. Ed. 2017, 56, 3085-3089; k) C. Qi, F.
Hasenmaile, V. Gandon, D. Lebœuf, ACS Catal. 2018, 8, 1734-1739; l)
Z. Tao, K. A. Robb, K. Zhao, S. E. Denmark, J. Am. Chem. Soc. 2018,
140, 3569-3573; m) E. Richmond, J. Yi, V. D. Vukoviꢀ, F. Sajadi, C. N.
Rowley, J. Moran, Chem. Sci. 2018, 9, 6411; n) C. Qi, V. Gandon, D.
Lebœuf, Angew. Chem. Int. Ed. 2018, 57, 14245-14249; o) Y. Zhu, I.
Colomer, A. L. Thompson, T. J. Donohoe, J. Am. Chem. Soc. 2019, 141,
6489-6493.
[8]
[9]
a) M. Dryzhakov, M. Hellal, E. Wolf, F. C. Falk, J. Moran, J. Am. Chem.
Soc. 2015, 137, 9555-9558; b) M. Dryzhakov, J. Moran, ACS Catal. 2016,
6, 3670-3673.
J. G. M. Morton, M. A. Dureen, D. W. Stephan, Chem. Commun. 2010,
46, 8947-8949.
[10] For selected papers where transition metal-promoted reactions were
later found to be Brønsted acid catalyzed processes, see: a) B.
Schlummer, J. F. Hartwig, Org. Lett. 2002, 4, 1471-1474; b) T. C.
Wabnitz, J.-Q. Yu, J. B. Spencer, Chem. Eur. J. 2004, 10, 484-493; c) D.
C. Rosenfeld, S. Shekhar, A. Takemiya, M. Utsunomiya, J. F. Hartwig,
Org. Lett. 2006, 8, 4179-4182; d) P. N. Liu, Z. Y. Zhou, C. P. Lau, Chem.
Eur. J. 2007, 13, 8610-8619; e) T. Jin, F. Yang, C. Liu, Y. Yamamoto,
Chem. Commun. 2009, 3533-3535; f) T. T. Dang, F. Boeck, L.
Hintermann, J. Org. Chem. 2011, 76, 9353-9361; g) H. J. Jin, J. H. Kim,
E. J. Kang, Synthesis 2017, 49, 3137-3144; h) E. T. Sletten, Y.-J. Tu, H.
B. Schlegel, H. M. Nguyen, ACS Catal. 2019, 9, 2110-2123.
[11] The bulky pyridine 2,6-di-tert-butylpyridine (DTBP) is commonly used to
distinguish between boron or other Lewis acids and Brønsted acids
because it does not complex most Lewis acids, including boron: a) H. C.
Brown, B. Kanner, J. Am. Chem. Soc. 1966, 88, 986-992; b) P. G.
5
This article is protected by copyright. All rights reserved.