We thank DGICYT (PB92-0982C) and the Fonds der
Chemischen Industrie for financial support. P. G.-H. is grateful
to Ministerio de Educacio´n y Cultura for a Grant.
O(2)
S(1A)
Footnotes and References
C(6)
S(2)
C(5)
† Dedicated to Professor Pascual Royo on the occasion of his 60th
birthday.
‡ E-mail: jvs@fcu.um.es
C(4)
Au(1)
C(1)
§ E-mail: p.jones@tu-bs.de
C(3)
∑ Crystal data for complex 2: C48H42AuNO4P2S4, triclinic, space group P1,
S(1)
¯
O(1)
C(2)
T = 143 K, a = 10.729(3), b = 11.853(3), c = 18.076(4) Å, a = 83.13(2),
b = 81.62(2), g = 79.75(2)°, U = 2227.6(10) Å3, Z = 2, l(Mo-
Ka) = 0.71073 Å, m = 3.61 mm21, Dc = 1.616 Mg m23. Data collection:
Yellow prism 0.55 3 0.40 3 0.30 mm, Stoe STADI-4 diffractometer, 9522
intensities of which 7867 independent, 2qmax 50°, absorption corrections
based on y-scans with transmissions 0.776–0.933. Structure solution and
refinement: heavy-atom method, refined anisotropically on F2 (program
SHELXL-93, G.M. Sheldrick, University of Go¨ttingen). H atoms with
riding model or as rigid methyl groups. In the C(NO)Me groups of the
second anion, the slightly short C–C and long CNO bonds and the difficulty
in locating methyl H may indicate some disorder. Final wR(F2) 0.0742,
Fig. 1 Structure of one of the two independent anions of 2. Selected bond
lengths (Å) and angles (°): Au(1)–S(1) 2.3234(13), 2.3375(13), Au(1)–S(2)
2.3479(12), 2.3217(12), C(1)–S(1) 1.758(4), 1.748(4), C(1)–S(2) 1.744(4),
1.755(4), C(1)–C(4) 1.353(6), 1.365(6); S(1)–Au(1)–S(2) 74.16(4),
74.46(4), S(2)–Au(1)–S(1A) 105.84(4), 105.54(4), S(1)–C(1)–S(2)
107.0(2), 107.2(2), S(1)–C(1)–C(4) 125.8(3), 126.1(3), S(2)–C(1)–C(4)
127.2(3), 126.8(4).
bond,15,20 or the influence of the double bond twisting on the
position of the IR nCNC stretching band21 or on the photoioniza-
tion energy22 have been studied. Our synthesis opens a new
access for such studies. The only 2,2-diacetylethylene-1,1-di-
thiolato complexes (of MnII, CoII, NiII, CuII and ZnII) mentioned
in the literature were prepared from the corresponding sodium
salt of the ligand and their composition was only established by
elemental analysis, while amperometric and potentiometric
titrations were unsuccessful.23
R(F) 0.0296, 547 parameters, 464 restraints, S = 1.09, max Dr 1.4 e Å23
.
CCDC 182/591.
1 A. N. Papazian, Gold Bull., 1982, 15, 81.
2 A. Lorber and T. M. Simon, Gold Bull., 1979, 12, 149; K. C. Dash and
H. Schmidbaur, Metal Ions in Biological Systems, ed. H. Sigel, Marcel
Dekker, New York, 1982; P. J. Sadler, Adv. Inorg. Chem., 1991, 36, 1.
3 T. Okada, B. K. Patterson, S.-Q. Ye and M. E. Gurney, Virology, 1993,
192, 631.
4 T. M. Simon, D. H. Kunishima, D. H. Vibert and A. Lorber, Cancer
Res., 1981, 41, 94.
5 C. K. Mirabelli, R. K. Johnson, C. M. Sung, L. Faucette, K. Muirhead
and S. T. Crooke, Cancer Res., 1985, 45, 32.
6 J. Vicente, M. T. Chicote, I. Saura-Llamas and M. C. Lagunas, J. Chem.
Soc. Chem. Commun., 1992, 915.
7 K. K. Pandey, Coord. Chem. Rev., 1995, 140, 37; V. Cadierno,
M. P. Gamasa, J. Gimeno and E. Lastra, J. Organomet. Chem., 1996,
510, 207.
8 H. Otto and H. Werner, Chem. Ber., 1987, 120, 97.
9 D. Jentsch, P. G. Jones, C. Tho¨ne and E. Schwarzmann, J. Chem. Soc.
Chem. Commun., 1989, 1495.
10 J. Vicente, M. T. Chicote, P. Gonza´lez-Herrero and P. G. Jones,
J. Chem. Soc. Chem. Commun., 1995, 745.
Many dinuclear gold(i) complexes are known to undergo
oxidative addition reactions with halogens, pseudohalogens or
alkyl halides to give gold(ii) complexes containing a gold–gold
bond.24 However, when complex 1 is treated with an equimolar
amount of Cl2IPh in dichloromethane a disproportionation
reaction takes place, giving [N(PPh3)2][AuCl2] along with the
2
gold(iii) complex [N(PPh3)2][Au{h -S2CNC(COMe)2}2] 2. The
same behaviour has previously been observed for other
dithiolato,25 dialkyldithiocarbamato,26 or trithiocarbonato27
gold(i) complexes.
The isolated complexes 1 and 2 have been fully characterized
by C, H, N, S analyses, IR spectroscopy and 1H and 13C NMR.
The X-ray crystal structure of complex 2 (Fig. 1),∑ shows it to
crystallize with two independent half-anions and one
11 M. Bardaj´ı, M. C. Gimeno, P. G. Jones, A. Laguna, M. Laguna,
F. Mercha´n and I. Romeo, Organometallics, 1997, 16, 1083.
12 Z.-T. Huang and X. Shi, Synthesis, 1990, 162.
13 A. K. El-Shafei, A. M. M. El-Saghier and E. A. Ahmed, Synthesis, 1994,
152.
[N(PPh3)2] cation in the asymmetric unit. Both anions show
2
almost
identical
inversion-symmetric
[Au{h -
S2CNC(COMe)2}2] E,Z-conformations. The gold atoms are in
distorted square-planar environments, the angles around gold
differing from the ideal value of 90° because of the small bite of
the dithiolate ligand [S(1)–Au(1)–S(2) 74.16(4), 74.46(4)°;
S(1)–Au(1)–S(2A) 105.84(4), 105.54(4)°, respectively]. The
Au(1), S(1), S(2), C(1) and C(2) atoms are coplanar (mean
deviation 0.054, 0.044 Å), with both acetyl groups twisted out
of this plane, one of them considerably (torsion angle 55, 48°),
the other one slightly (torsion angle 9, 13°, respectively). The
C(1)–C(4) bond distances [1.353(6), 1.365(4) Å] lie in the range
expected for C(sp2)NC(sp2) double bonds (1.294–1.392)28 and
are similar to that found in the closely related ketene S,S-
dithioacetal (MeS)2CNC{C(O)Me}2 (1.351 Å) which shows a
twisted (torsion angle 14°) E,E-conformation.29
14 D. Villemin and A. B. Alloum, Synthesis, 1991, 301.
15 J. Sandstro¨m and I. Wennerbeck, Acta Chem. Scand., 1970, 24, 1191.
16 L.-B. Wang and Z.-T. Huang, Synth. Commun., 1996, 26, 459;
Z.-T. Huang and X. Shi, Chem. Ber., 1990, 123, 541.
17 F. A. Abu-Shanab, M. H. Elnagdi, F. M. Ali and B. J. Wakefield,
J. Chem. Soc., Perkin Trans. 1, 1994, 1449.
18 E. C. Taylor and P. W. Ronald, Heterocycles, 1977, 8, 243.
19 K. Mohanalingam, M. Nethaji and P. K. Das, J. Mol. Struct., 1996, 378,
177.
20 J. Sandstro¨m and U. Sjo¨strand, Tetrahedron, 1978, 34, 3305.
21 D. Smith and P. J. Taylor, J. Chem. Soc., Perkin Trans. 2, 1979,
1376.
22 F. P. Colonna, G. DiStefano, J. Sandstro¨m and U. Sjo¨strand, J. Chem.
Soc., Perkin Trans. 2, 1978, 279.
23 W. U. Malik, R. Bembi and V. K. Bharddwaj, J. Indian Chem. Soc.,
1984, 65, 379.
Apart from bands due to the cation, the solid-state IR
spectrum of 1 shows two strong n(CNO) bands at 1698 and 1678
cm21 and a strong n(CNC) band at 1580 cm21, while the n(AuS)
band(s) cannot be assigned unequivocally because of the
presence of bands from the [N(PPh3)2] cation in the 400–300
cm21 region. The position of the n(CNO) band suggest that
conjugation plays at best a marginal role.29 The IR spectrum of
2 shows two strong n(CNO) bands at 1664 and 1636 cm21 and
a medium n(AuS) band at 370 cm21. The frequency of the
n(CNC) band is expected to decrease because of conjugation
with one of the acetyl groups and cannot be unequivocally
assigned.
24 J. P. Fackler Jr., Polyhedron, 1997, 16, 1.
25 M. N. I. Khan, S. Wang and J. P. Fackler Jr., Inorg. Chem., 1989, 28,
3579.
26 D. C. Calabro, B. A. Harrison, G. T. Palmer, M. K. Moguel,
R. L. Rebbert and J. L. Burmeister, Inorg. Chem., 1981, 20, 4311.
27 J. Vicente, M. T. Chicote, P. Gonza´lez-Herrero and P. G. Jones,
unpublished work.
28 F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen and
R. Taylor, J. Chem. Soc., Perkin Trans. 2, 1987, S1.
29 A. J. Jarvis and P. J. Taylor, J. Chem. Soc., Perkin Trans. 2, 1978,
972.
Received in Cambridge, UK, 15th July 1997; 7/05052F
2048
Chem. Commun., 1997