COMMUNICATIONS
canonical base pair formation and thus they should be ideally
suited for use in the monitoring of differential enzyme
interactions between insertion and misinsertion events. As-
says of nucleotide incorporation opposite G, T, and C revealed
that KF misinserts TTP and 1a, b opposite G with the
highest efficiency.[9, 13] Strikingly, as is already apparent from
the results shown in Figure 1B, 1a and 1b exhibit dramatically
decreased misinsertion efficiency. Steady-state kinetic analy-
ses revealed an approximately 100-fold decrease in misinser-
tion efficiency using the 4'-alkylated probes 1a, b compared
to TTP (Table 2).
In conclusion, the selectivity of nucleotide insertion by a
DNA polymerase can be significantly increased by modified
sugar moieties. Our results strongly implicate the involvement
of differential DNA-polymerase interactions with the sugar in
processes that contribute to the fidelity of DNA synthesis.
Furthermore, our studies provide a new functional and
general method to monitor steric constraints in nucleotide
binding pockets of DNA polymerases. Further analyses with
such steric probes, both at the functional and structural level
should reveal more insights into mechanisms of DNA
polymerase selectivity.
Received: May 14, 2001 [Z17101]
Table 2. Steady-state analyses for nucleoside triphosphate misinsertion
and mismatch extension. The data presented are averages of duplicate or
triplicate experiments. Further experimental details are described in
Supporting Information.
[1] Recent reviews and commentaries: a) T. A. Kunkel, K. Bebenek,
Annu. Rev. Biochem. 2000, 69, 497 ± 529; b) E. T. Kool, J. C. Morales,
K. M. Guckian, Angew. Chem. 2000, 112, 1046 ± 1068; Angew. Chem.
Int. Ed. 2000, 39, 991 ± 1009; c) T. A. Kunkel, S. H. Wilson, Nat. Struct.
Biol. 1998, 5, 95 ± 99; d) U. Diederichsen, Angew. Chem. 1998, 110,
1745 ± 1747; Angew. Chem. Int. Ed. 1998, 37, 1655 ± 1657; e) M. F.
Goodman, Proc. Natl. Acad. Sci. USA 1997, 94, 10493 ± 10495.
Nucleoside
triphosphate
KM
[mm]
vmax
[min  10
vmax/KM
1
3
1
]
[m 1 min
]
misinsertion:
TTP
1a
1b
22 Æ 0.2
16 Æ 1
730
5
7
Â
[2] a) S. Doublie, S. Tabor, A. M. Long, C. C. Richardson, T. Ellenberger,
65 Æ 5
0.34 Æ 0.02
1.7 Æ 0.1
Nature 1998, 391, 251 ± 258; b) Y. Li, S. Korolev, G. Waksman, EMBO
J. 1998, 17, 7514 ± 7525; c) J. R. Kiefer, C. Mao, J. C. Braman, L. S.
Beese, Nature 1998, 391, 304 ± 307; d) H. F. Huang, R. Chopra, G. L.
Verdine, S. C. Harrison, Science 1998, 282, 1669 ± 1675; e) H. Pelletier,
M. R. Sawaya, A. Kumar, S. H. Wilson, J. Kraut, Science 1994, 264,
1891 ± 1903.
228 Æ 5
mismatch extension:
TTP
1a
1b
19 Æ 1
80 Æ 17
40 Æ 5
36 Æ 2
1900
40
100
2.9 Æ 0.1
4.0 Æ 0.3
[3] C. O.-Yang, W. Kurz, E. M. Eugui, M. J. McRoberts, J. P. H. Verhey-
den, L. J. Kurz, K. A. M. Walker, Tetrahedron Lett. 1992, 33, 41 ± 44.
[4] I. Sugimoto, S. Shuto, S. Mori, S. Shigeta, A. Matsuda, Bioorg. Med.
Chem. Lett. 1999, 9, 385 ± 388.
[5] A. Marx, P. Erdmann, M. Senn, S. Körner, T. Jungo, M. Petretta, P.
Imwinkelried, A. Dussy, K. J. Kulicke, L. Macko, M. Zehnder, B.
Giese, Helv. Chim. Acta 1996, 79, 1980 ± 1994.
Further experiments also showed that the analogues 1a and
1b were not as well inserted opposite T or C as unmodified
TTP was (see Supporting Information). These results clearly
show that nucleotide-insertion selectivity is increased by
substitution of the hydrogen atom at the 4'-position of the
sugar with bulkier alkyl groups.
Â
[6] T. Kovacs, L. Ötvös, Tetrahedron Lett. 1988, 29, 4525 ± 4528; recent
review: K. Burgess, D. Cook, Chem. Rev. 2000, 100, 2047 ± 2059.
[7] L. J. Rinkel, C. Altona, J. Biomol. Struct. Dyn. 1987, 4, 621 ± 648.
[8] S. Creighton, L. B. Bloom, M. F. Goodman, Methods Enzymol. 1995,
262, 232 ± 256.
The second critical determinant of intrinsic DNA-polymer-
ase fidelity is the capacity to extend from mismatched primer/
template ends.[1a, 8, 11] Here again, 1a and 1b should be ideally
suited to monitor differential DNA-polymerase interactions
with the sugar moiety in mismatch extension events. We
investigated extension from template-T/primer-G, T/T, and
T/C by using KF to extend from a mismatched base at the
primer 3'-end by incorporation of TTP or 1a, b. The most
efficient extension was from T/G for all thymidine triphos-
phate derivatives (data shown for T/G in Figure 1C).[9, 13] The
results of quantitative analyses of T/G extensions are pre-
sented in Table 2. KF extends a T/G mismatched primer end
with probes 1a, b significantly less efficiently than with TTP.
Again, this is in contrast to the results in Table 1 where TTP
and 1a, b extension of a perfectly matched primer were
equivalent. Our results indicate that nucleobase pair mis-
matches at the 3'-end of a primer/template complex trigger
unfavorable enzyme interactions with the sugar moiety of an
incoming nucleoside triphosphate and prevent inadvertent
sealing of a base substitution in the nascent DNA strand.
Indeed, this mechanism may be considered essential for
proofreading, and may allow a pause for other functions such
as intrinsic exonuclease activity or dissociation of the DNA-
replication complex.
[9] Detailed experimental procedures as well as DNA sequences applied
in the in vitro replication assays are provided in the Supporting
Information.
[10] M. S. Boosalis, J. Petruska, M. F. Goodman, J. Biol. Chem. 1987, 262,
14689 ± 14696.
[11] M. F. Goodman, S. Creighton, L. B. Bloom, J. Petruska, Crit. Rev.
Biochem. Mol. Biol. 1993, 28, 83 ± 126.
[12] Quantitative investigations towards the action of 4'-modified triphos-
phates on HIV-1 reverse transcriptase and cellular DNA polymerases
have been reported recently. 4'C-Azidothymidine triphosphate: M. S.
Chen, R. T. Suttmann, E. Papp, P. D. Cannon, M. J. McRoberts, C.
Bach, W. C. Copeland, T. S.-F. Wang, Biochemistry 1993, 32, 6002 ±
6010; 4'C-acetylated thymidine triphosphate: a) A. Marx, M. Spichty,
M. Amacker, U. Schwitter, U. Hübscher, T. A. Bickle, G. Maga, B.
Giese, Chem. Biol. 1999, 6, 111 ± 116; b) A. Marx, M. Amacker, M.
Stucki, U. Hübscher, T. A. Bickle, B. Giese, Nucleic Acids Res. 1998,
26, 4063 ± 4067.
[13] Results obtained with TTP agree with recently published data:
a) C. M. Joyce, X. C. Sun, N. D. F. Grindley, J. Biol. Chem. 1992, 267,
24485 ± 24500; b) S. S. Carroll, M. Cowart, S. J. Benkovic, Biochem-
istry 1991, 30, 804 ± 813; c) K. Bebenek, C. M. Joyce, M. P. Fitzgerald,
T. A. Kunkel, J. Biol. Chem. 1990, 265, 13878 ± 13887.
Angew. Chem. Int. Ed. 2001, 40, No. 19
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2001
1433-7851/01/4019-3695 $ 17.50+.50/0
3695