Published on Web 02/16/2002
Iodine(V) Reagents in Organic Synthesis. Part 1. Synthesis of
Polycyclic Heterocycles via Dess-Martin
Periodinane-Mediated Cascade Cyclization: Generality,
Scope, and Mechanism of the Reaction
K. C. Nicolaou,* P. S. Baran, Y.-L. Zhong, and K. Sugita
Contribution from the Department of Chemistry and The Skaggs Institute for Chemical Biology,
The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037,
and Department of Chemistry and Biochemistry, UniVersity of California, San Diego,
9500 Gilman DriVe, La Jolla, California 92093
Received September 4, 2001
Abstract: The scope, generality, and mechanism of the Dess-Martin periodinane-mediated cyclization
reaction of unsaturated anilides discovered during the total synthesis of the CP-molecules (phomoidrides
A and B) are delineated. A plethora of heterocyclic compounds are accessible by employing γ,δ-unsaturated
amides (derived from anilines and carboxylic acids), urethanes, or ureas (derived from isocyanates and
allylic alcohols and amines) as substrates. Optimization of the reaction led to room-temperature conditions,
while isotope labeling studies allowed a mechanistic rationale for this cascade reaction.
Introduction
compounds can be rapidly assembled and funneled into biologi-
cal screening programs.5 Recently, we unearthed a series of new
The importance of hypervalent iodine reagents in organic
synthesis has been amply demonstrated in recent years. Useful
synthetic reactions for the construction of carbon-heteroatom
and carbon-carbon bonds mediated by hypervalent iodine
species have been reviewed extensively.1 One of the field’s most
significant advances, the discovery of the Dess-Martin perio-
dinane (DMP),2 opened the door to a mild oxidation procedure
allowing a myriad of alcohols to be converted to the corre-
sponding carbonyl compounds. Its widespread use over the past
10 years attests to its benign nature and its uncanny ability to
succeed in the most difficult of oxidation circumstances.
o-Iodoxybenzoic acid (IBX),3 the precursor of DMP, has also
been shown to be a mild alcohol oxidant.4 Contemporary organic
synthesis is constantly striving for discovery and design of
reagents such as DMP and IBX which provide beneficial levels
of chemoselectivity and efficiency. In the postgenomic age, a
premium is placed on versatile, complexity-generating reactions
wherein a multitude of natural product-, drug-, and lead-like
paradigms for iodine(V)-mediated reactions with a variety of
organic substrates which go far beyond simple alcohol oxida-
tion.6 These discoveries, arising from our endeavors during the
total synthesis of the CP-molecules (phomoidrides A and B),7
allow the rapid and selective construction of complex polycycles,
including natural product analogues, diverse drug- and leadlike
molecules, amino sugars, R,â-unsaturated carbonyl compounds,
and an array of useful oxidized building blocks. In this series
of papers, we describe details of these processes and provide
new insights into their scope, generality, and mechanism. In
this article, we present a full account of the DMP-mediated
cascade polycyclization reaction of simple aryl amides (anilides),
urethanes, and ureas to complex phenoxazine-containing poly-
cycles (Scheme 1).
(5) Arya, P.; Chou, D. T. H.; Baek, M.-G. Angew. Chem., Int. Ed. 2001, 40,
339.
(6) (a) Nicolaou, K. C.; Zhong, Y.-L. Baran, P. S. Angew. Chem., Int. Ed.
2000, 39, 622. (b) Nicolaou, K. C.; Zhong, Y.-L.; Baran, P. S. Angew.
Chem., Int. Ed. 2000, 39, 625. (c) Nicolaou, K. C.; Baran, P. S.; Zhong,
Y.-L.; Vega, J. A. Angew. Chem., Int. Ed. 2000, 39, 2525. (d) Nicolaou,
K. C.; Zhong, Y.-L.; Baran, P. S. J. Am. Chem. Soc. 2000, 122, 7596. (e)
Nicolaou, K. C.; Sugita, K.; Baran, P. S.; Zhong, Y.-L. Angew. Chem.,
Int. Ed. 2001, 40, 207. (f) Nicolaou, K. C.; Baran, P. S.; Kranich, R.; Zhong,
Y.-L.; Sugita, K.; Zou, N. Angew. Chem., Int. Ed. 2001, 40, 202. (g)
Nicolaou, K. C.; Baran, P. S.; Zhong, Y.-L. J. Am. Chem. Soc. 2001, 123,
3183. (h) Nicolaou, K. C.; Zhong, Y.-L.; Baran, P. S.; Sugita, K. Angew.
Chem., Int. Ed. 2001, 40, 2145.
(1) (a) Varvoglis, A.; Spyroudis, S. Synlett 1998, 221. (b) Varvoglis, A.
HyperValent Iodine in Organic Synthesis; Academic Press: San Diego,
1996; p 256. (c) Wirth, T.; Hirt, U. H. Synthesis 1999, 1271. (d) Varvoglis,
A. The Organic Chemistry of Polycoordinated Iodine; VCH: New York,
1992; p 414.
(2) (a) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155. (b) Dess, D.
B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277. (c) Meyer, S. D.;
Schreiber, S. L. J. Org. Chem. 1994, 59, 7549.
(3) First preparation of IBX: Hartman, C.; Meyer, V. Chem. Ber. 1893, 26,
1727. For a superior route to IBX, see: Frigerio, M.; Santagostino, M.;
Sputore, S. J. Org. Chem. 1999, 64, 4537. Introduction of the acronym
“IBX”: Katritzky, A. R.; Duell, B. L.; Gallos, J. K. Org. Magn. Reson.
1989, 27, 1007.
(4) (a) Frigerio, M.; Santagostino, M. Tetrahedron Lett. 1994, 35, 8019. (b)
Corey, E. J.; Palani, A. Tetrahedron Lett. 1995, 36, 3485. (c) De Munari,
S.; Frigerio, M.; Santagostino, M. J. Org. Chem. 1996, 61, 9272. (d)
Frigerio, M.; Santagostino, M.; Sputore, S.; Palmisano, G. J. Org. Chem.
1995, 60, 7272.
(7) Part 1: Nicolaou, K. C.; Baran, P. S.; Zhong, Y.-L.; Choi, H.-S.; Yoon,
W. H.; He, Y.; Fong, K. C. Angew. Chem., Int. Ed. 1999, 38, 1669. Part
2: Nicolaou, K. C.; Baran, P. S.; Zhong, Y.-L.; Fong, K. C.; He, Y.; Yoon,
W. H.; Choi, H.-S. Angew. Chem., Int. Ed. 1999, 38, 1676. For a full
account, see preceding papers in this issue. Part 1: Nicolaou, K. C.; Jung,
J.; Yoon, W. H.; Fong, K. C.; Choi, H.-C.; He, Y.; Zhong, Y.-L.; Baran,
P. S. J. Am. Chem. Soc. 2002, 124, 2183-2189. Part 2: Nicolaou, K. C.;
Baran, P. S.; Zhong, Y.-L.; Fong, K. C.; Choi, H.-C. J. Am. Chem. Soc.
2002, 124, 2190-2201. Part 3: Nicolaou, K. C.; Zhong, Y.-L.; Baran, P.
S.; Jung, J.; Choi, H.-C.; Yoon, W. H. J. Am. Chem. Soc. 2002, 124, 2202-
2211.
9
2212 VOL. 124, NO. 10, 2002 J. AM. CHEM. SOC.
10.1021/ja012124x CCC: $22.00 © 2002 American Chemical Society