Communication
Decarboxylation of the intermediate forms palladium tert- ton is also acknowledged for financial support. The NMR spec-
butoxide intermediate B, which is in equilibrium with the η3- trometer at the College of Charleston is supported by the Na-
allylpalladium species C. Dissociation of the alkoxide from Pd tional Science Foundation under Grant No. 1429308. Dr. John
may activate the trimethylsilylisocyanate for nucleophilic attack Greaves and Dr. Beniam Berhane (University of California, Irvine)
on an η3-allylpalladium D to provide the desired product and are acknowledged for mass spectrometry data.
regenerate palladium(0).
Keywords: Palladium · Allylic substitution · Isocyanate ·
Urea · Allylic compounds
Conclusions
A new palladium-catalyzed synthesis of allylic isocyanates from
the corresponding carbonate and trimethylsilylisocyanate has
[1] S. Ozaki, Chem. Rev. 1972, 72, 457–496.
[2] a) F. W. Hoover, H. S. Rothrock, J. Org. Chem. 1964, 29, 143–145; b) C.
been reported. Examination of bidentate phosphine ligands
found a large bite angle was necessary for full conversion of
the carbonate to the isocyanate. A two-step, one-pot procedure
was developed for the synthesis of ureas by the addition of an
amine in the second step. The substrate scope, with regard to
the amine as well as allylic carbonate, was defined under these
optimized conditions. Future studies will focus on expanding
the substrate scope for this transformation.
Christophersen, A. Holm, Acta Chem. Scand. 1970, 24, 1852–1854.
[3] R. J. Slocombe, E. E. Hardy, J. H. Saunders, R. L. Jenkins, J. Am. Chem. Soc.
1950, 72, 1888–1891.
[4] F. M. Miloserdov, V. V. Grushin, Angew. Chem. Int. Ed. 2012, 51, 3668–
3672; Angew. Chem. 2012, 124, 3728–3732.
[5] A. Yoshimura, M. W. Luedtke, V. V. Zhdankin, J. Org. Chem. 2012, 77,
2087–2091.
[6] I. Tkatchenko, R. Jaouhari, M. Bonnet, G. Dawkins, S. Lecolier, France Pat-
ent FR2575467, 1986; US Patent 4,749,806, 1988.
[7] E. Kianmehr, M. H. Baghersad, Adv. Synth. Catal. 2011, 353, 2599–2603.
[8] a) E. V. Vinogradova, B. P. Fors, S. L. Buchwald, J. Am. Chem. Soc. 2012,
134, 11132–11135; b) E. V. Vinogradova, N. H. Park, B. P. Fors, S. L. Buch-
wald, Org. Lett. 2013, 15, 1394–1397.
[9] B. M. Trost, D. L. Van Vranken, Chem. Rev. 1996, 96, 395–422.
[10] S.-C. Sha, J. Zhang, P. J. Carroll, P. J. Walsh, J. Am. Chem. Soc. 2013, 135,
17602–17609.
Experimental Section
1-Benzyl-3-cinnamylurea (3a): Representative procedure: Acti-
vated
4 Å molecular sieves, tris(dibenzylideneacetone)dipalla-
dium(0)-chloroform adduct (12 mg, 0.012 mmol, 0.03 equiv.), and
Xantphos (16 mg, 0.030 mmol, 0.075 equiv.) were added to a flame
dried 10 mL round-bottomed flask. The reaction was placed under
an atmosphere of Ar. Cinnamyl tert-butyl carbonate (68 mg,
0.40 mmol, 1 equiv.) was added as a solution in 3 mL of CH2Cl2.
Trimethylsilyl isocyanate (82 μL, 0.60 mmol, 1.5 equiv.) was added
by syringe and the reaction was stirred at room temp. After 2 h,
benzylamine (66 μL, 0.60 mmol, 1.5 equiv.) was added by syringe
to the orange reaction mixture and the reaction was stirred for an
additional hour. The reaction mixture was concentrated in vacuo
and purified by silica gel column chromatography (dry loading) us-
ing a gradient 4:1 hexanes/EtOAc to 1:1 hexane/EtOAc to provide
3a (90 mg, 85 %) as a white solid.
[11] For a review, see: a) P. W. N. M. van Leeuwen, P. C. J. Kamer, J. N. H. Reek,
P. Dierkes, Chem. Rev. 2000, 100, 2741–2770. See also: b) L. A.
van der Veen, P. H. Keeven, G. C. Schoemaker, J. N. H. Reek, P. C. J. Kamer,
P. W. N. M. van Leeuwen, M. Lutz, A. L. Spek, Organometallics 2000, 19,
872–883; c) M. Kranenburg, P. C. J. Kamer, P. W. N. M. van Leeuwen, Eur.
J. Inorg. Chem. 1998, 25–27.
[12] J. E. van Muijlwijk-Koezen, H. Timmerman, R. C. Vollinga, J. F.
von Drabbe Künzel, M. de Groote, S. Visser, A. P. IJzerman, J. Med. Chem.
2001, 44, 749–762.
[13] S. M. Wilhelm, L. Adnane, P. Newell, A. Villanueva, J. M. Llovet, M. Lynch,
Mol. Cancer Ther. 2008, 7, 3129–3140.
[14] B. P. Morgan, A. Muci, P.-P. Lu, X. Qian, T. Tochimoto, W. W. Smith, M.
Garard, E. Kraynack, S. Collibee, I. Suehiro, A. Tomasi, S. C. Valdez, W.
Wang, H. Jiang, J. Hartman, H. M. Rodriguez, R. Kawas, S. Sylvester, K. A.
Elias, G. Godinez, K. Lee, R. Anderson, S. Sueoka, D. Xu, Z. Wang, N.
Djordjevic, F. I. Malik, D. J. Morgans, ACS Med. Chem. Lett. 2010, 1, 472–
477.
[15] M. D. McBriar, H. Guzik, R. Xu, J. Paruchova, S. Li, A. Palani, J. W. Clader,
W. J. Greenlee, B. E. Hawes, T. J. Kowalski, K. O'Neill, B. Spar, B. Weig, J.
Med. Chem. 2005, 48, 4746–4749.
Supporting Information (see footnote on the first page of this
article): Experimental details and characterization data for products
1
and copies of H and 13C NMR spectra of all reported products.
Acknowledgments
The College of Charleston Undergraduate Research and Crea-
tive Activities office is acknowledged for a summer undergradu-
ate research fellowship grant for L. P. J.. The College of Charles-
[16] X. Du, E. Hansell, J. C. Engel, C. R. Caffrey, F. E. Cohen, J. H. McKerrow,
Chem. Biol. 2000, 7, 733–742.
Received: February 10, 2016
Published Online: March 22, 2016
Eur. J. Org. Chem. 2016, 1829–1831
1831
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim