Sc(OC6H2tBu2-2,6-Me-4)3 (av. 1.869 Å)14 and are comparable
to those found in other formally five-coordinate scandium
aryloxide complexes, e.g., [Sc2(4-tert-butyloxacalix[3]-arene)2-
(DMSO)2]ؒ2DMSO (1.970 Å).9b The Sc–O2/O4 bond lengths
average 2.263 Å and lie in the range for other metallated
calix[4]arene complexes featuring a formally five-coordinate
exo isomer, e.g., Al[4-tert-butylcalix[4]arene(OMe)2]H (2.125
Å)15 or Fe[4-tert-butylcalix[4]arene(OMe)2]CPh2 (2.225 Å).16
The Sc–N bond length of 2.060(2) Å compares to the av. 2.069
Å found in Sc[N(SiHMe2)2]3(thf ).17
Acknowledgements
We thank the Deutsche Forschungsgemeinschaft and Degussa
AG for financial support. Generous support from Prof.
Wolfgang A. Herrmann is gratefully acknowledged. Frank
Estler thanks the Fonds der Chemischen Industrie for the
award of a fellowship.
Notes and references
The reaction of 1b with Lu[N(SiHMe2)2]3(thf )2 was carried
out in toluene at ambient temperature according to Scheme 1
because of the poor solubility of 1b in hexane. After crystalliz-
ation from toluene, [LuL{N(SiHMe2)2}] (4) was obtained in
high yield (90%). Its spectroscopic details are almost identical
to those of 3b. The ν(Si–H) stretching vibration of the lutetium
bonded bis(dimethylsilyl)amido ligand appears at ν = 2053 cmϪ1
‡ For convenience, the term “lanthanide” is used synonymous with the
rare earth elements Sc, Y, La and Ln = Ce–Lu.
§ We propose that also for reasons of steric discrimination, a more
complicated reaction occurred when Ln[N(SiMe3)2]3 was used as a syn-
thetic precursor.
¶ Crystallographic data for 3a: C83H104NO4ScSi2, M = 1280.81, mono-
clinic, space group Cc, a = 17.5600(4), b = 24.5441(7), c = 17.2735(4) Å,
β = 92.577(2)Њ, V = 7437.3(3) Å3, Z = 4, ρcalc = 1.144 g cmϪ3, F(000) =
2760, µ(Mo-Kα) = 0.180 mmϪ1, λ = 0.71073 Å, T = 123 K. The 20851
reflections measured on a Nonius Kappa CCD area detector yielded
12306 unique data (Θmax = 25.34Њ, Rint = 0.037), R1 = 0.0532, wR2 =
0.1276.
1
and the H NMR spectrum shows a septet at δ = 5.74. The
signals for the ring methylene groups and for the benzylic
methylene groups are at δ = 4.19/2.93 and at δ = 5.49, respect-
ively. Also for complex 4, the 13C NMR chemical shift of the
ring methylene groups of δ = 32.8 suggests a cone conformation
in solution (cf., δ(CH2) = 31.6 for calix[4]arene).13 The molec-
ular structure of 4 could be unequivocally proven by X-ray
crystallography (Fig. 2).¶
¯
For 4: C53H56NO4LuSi2, M = 1002.14, triclinic, space group P1, a =
11.3794(1), b = 14.0015(2), c = 16.9067(3) Å, α = 69.3972(6), β =
75.8968(6), γ = 69.8248(8)Њ, V = 2343.69(6) Å3, Z = 2, ρcalc = 1.420 g
cmϪ3, F(000) = 1024, µ(Mo-Kα) = 2.203 mmϪ1, λ = 0.71073 Å, T = 173
K. The 21461 reflections measured on a Nonius Kappa CCD area
detector yielded 8139 unique data (Θmax = 25.38Њ, Rint = 0.042), R1 =
0.0329, wR2 = 0.0748. CCDC reference numbers 182440 (3a) and
tallographic data in CIF or other electronic format.
1 G. J. P. Britovsek, V. C. Gibson and D. F. Wass, Angew. Chem., Int.
Ed., 1999, 38, 428.
2 M. Shibasaki and H. Gröger, Top. Organomet. Chem., 1999, 2,
199.
3 J. M. Harrowfield, M. I. Odgen, W. R. Richmond and A. H. White,
J. Chem. Soc., Dalton Trans., 1991, 2153.
4 (a) B. Castellano, E. Solari, C. Floriani, N. Re, A. Chiesi-Villa and
C. Rizzoli, Organometallics, 1998, 17, 2328; (b) R. Anwander,
J. Eppinger, I. Nagl, W. Scherer, M. Tafipolsky and P. Sirsch, Inorg.
Chem., 2000, 39, 4713.
5 K. Araki, K. Iwamoto, S. Shinkai and T. Matsuda, Bull. Chem. Soc.
Jpn., 1990, 63, 3480.
6 (a) I. L. Fedushkin, M. Weydert, A. A. Fagin, S. E. Nefedov,
I. L. Eremenko, M. N. Bochkarev and H. Schumann, Z. Natur-
forsch., Teil B, 1999, 54, 466; (b) L. M. Engelhardt, B. M. Furphy,
J. M. Harrowfield, D. L. Kepert, A. H. White and F. R. Wilner,
Aust. J. Chem., 1988, 41, 1465.
7 (a) P. D. Beer, M. G. Drew, A. Grieve, M. Kan, P. B. Leeson,
G. Nicholson, M. I. Odgen and G. Williams, Chem. Commun., 1996,
117; (b) P. D. Beer, M. G. Drew, A. Grieve, M. Kan, P. B. Leeson,
G. Nicholson, M. I. Odgen and G. Williams, Inorg. Chem., 1996, 35,
2202.
8 M. B. Furphy, J. M. Harrowfield, M. I. Odgen, B. W. Skelton,
H. A. White and F. R. Wilner, J. Chem. Soc., Dalton Trans., 1989,
2217.
9 (a) Z. Asfari, J. M. Harrowfield, M. I. Odgen, J. Vicens and
H. A. White, Angew. Chem., Int. Ed. Engl., 1991, 30, 854; (b)
C. E. Daitch, P. D. Hampton and E. N. Duesler, Inorg. Chem., 1995,
34, 5641.
10 R. Anwander, Top. Organomet. Chem., 1999, 2, 1.
11 J.-D. van Loon, A. Arduini, L. Coppi, W. Verboom, A. Pochini,
R. Ungaro, S. Harkema and D. N. Reinhoudt, J. Org. Chem., 1990,
55, 5639.
12 J. Eppinger, M. Spiegler, W. Hieringer, W. A. Herrmann and
R. Anwander, J. Am. Chem. Soc., 2000, 122, 3080.
13 C. Jaime, J. de Mendoza, P. Prados, P. M. Nieto and C. Sánchez,
J. Org. Chem., 1991, 56, 3372.
14 P. B. Hitchcock, M. F. Lappert and A. Singh, J. Chem. Soc., Chem.
Commun., 1983, 1499.
15 M. G. Gardiner, G. A. Koutsantonis, S. M. Lawrence, P. J. Nichols
and C. L. Raston, Chem. Commun., 1996, 2035.
Fig. 2 Molecular structure of 4. Selected bond lengths (Å) and angles
(Њ): Lu–N 2.186(4), Lu–O1 2.011(3), Lu–O2 2.351(3), Lu–O3 2.011(3),
Lu–O4 2.356(3); O1–Lu–N 121.1(1), O2–Lu–N 99.4(1), O1–Lu–O3
121.8(1), O2–Lu–O4 156.86(9).
The lutetium centre in 4 shows the same coordination geom-
etry as scandium in 3a. The Lu–O (aryloxide) and Lu–O (ether)
bond lengths average 2.011 and 2.353 Å, respectively, and are
comparable to those found in five-coordinate aryloxide com-
plex Lu(OC6H3iPr2-2,6)3(thf )2 (av. 2.044 and 2.296 Å)18 and are
in agreement with other five-coordinate lanthanide calix-
[4]arene complexes, e.g., 3a and [Y(4-tert-butylcalix[4]arene-
(OSiHMe2)(thf )]2 (2.065 and 2.260 Å) taking into account the
different ionic radii.4b The Lu–N bond length, 2.186(4) Å,
equals those found in Lu[N(SiHMe2)2]3(thf )2 (2.184(3), 2.238(3)
and 2.253(3) Å).17 The different Ln–O bond lengths and the
different substitution pattern at the upper rim of complexes 3a
and 4 implicate distinct conformational orientations of the
phenyl rings. The two opposite O-alkylated phenyl rings form
angles of 69.4Њ (3a) and 76.9Њ (4) with the least square plane
formed by the four carbon atoms of the methylene groups. The
phenolic rings are tilted against this C4 plane by 45.5Њ (3a) and
48.6Њ (4), respectively. The overall pinched cone conformational
arrangement is also revealed by the O ؒ ؒ ؒ O distances of the
ether moieties (O2 ؒ ؒ ؒ O4, 4.475 Å (3a) and 4.611 Å (4)) and
those of the more flattened phenol units (O1 ؒ ؒ ؒ O3, 3.411 Å
(3a) and 3.514 Å (4)).
16 M. Giusti, E. Solari, L. Giannini, C. Floriani, A. Chiesi-Villa and
C. Rizzoli, Organometallics, 1997, 16, 5610.
17 R. Anwander, O. Runte, J. Eppinger, G. Gerstberger, E. Herdtweck
and M. Spiegler, J. Chem. Soc., Dalton Trans., 1998, 847.
18 D. M. Barnhart, D. L. Clark, J. C. Gordon, J. C. Huffman,
R. L. Vincent, J. G. Watkin and B. D. Zwick, Inorg. Chem., 1994, 33,
3487.
Preliminary investigations show that activation of complexes
3 and 4 for catalytic applications can be achieved by silylamide
ligand displacement involving Brønsted (HOMe) and Lewis
acidic reagents (AlR3).
J. Chem. Soc., Dalton Trans., 2002, 3088–3089
3089