Synthesis, Photophysical Properties of Tribranched Chromophores
low, and most of the light is absorbed. Therefore, the
new tribranched triazine chromophores T1, T2 and T3
may be useful in optical limiting materials.
J.; Wasielewski, M. R.; Kim, D. J. Phys. Chem. A 2008, 112,
6563.
9
(a) Yang, W. J.; Kim, D. Y.; Kim, C. H.; Jeong, M.-Y.; Lee,
S. K.; Jeon, S.-J.; Cho, B. R. Org. Lett. 2004, 6, 1389.
(b) Huang, Z.; Wang, X.; Li, B.; Lv, C.; Xu, J.; Jiang, W.;
Tao, X.; Qian, S.; Cui, Y.; Yang, P. Opt. Mater. 2007, 29,
1084.
Conclusions
In summary, a series of 1,3,5-triazine TPA chromo-
phores with 1,4-phenylenedivinylene as extended π con-
jugated-bridge, EDOT, N-methylpyrrole and triphenyl
amine as the electron-donating end-groups were success-
fully synthesized. They are soluble in ordinary organic
solvents. NLT measurement in femtoseconds (fs) regime
10 Kato, S.-I.; Matsumoto, T.; Shigeiwa, M.; Gorohmaru, H.;
Maeda, S.; Ishi-i, T.; Mataka, S. Chem.-Eur. J. 2006, 12,
2303.
11 (a) Cho, B. R.; Piao, M. J.; Son, K. H.; Lee, S. H.; Yoon, S.
J.; Jeon, S.-J.; Cho, M. Chem.-Eur. J. 2002, 8, 3907.
(b) Yang, W. J.; Kim, C. H.; Jeong, M.-Y.; Lee, S. K.; Piao,
M. J.; Jeon, S.-J.; Cho, B. R. Chem. Mater. 2004, 16, 2783.
12 Terenziani, F.; Katan, C.; Badaeva, E.; Tretiak, S.; Blanch-
ard-Desce, M. Adv. Mater. 2008, 20, 4641.
13 Kannan, R.; He, G.-S.; Lin, T.-C.; Prasad, P. N.; Vaia, R. A.;
Tan, L.-S. Chem. Mater. 2004, 16, 185.
14 Li, B.; Tong, R.; Zhu, R.-Y.; Meng, F.-S.; Tian, H.; Qian,
S.-X. J. Phys. Chem. B 2005, 109, 10705.
15 Cui, Y.-Z.; Fang, Q.; Xue, G.; Xu, G.-B.; Yin, L.; Yu, W.-T.
Chem. Lett. 2005, 34, 644.
16 Xu, F.; Wang, Z.-W.; Gong, Q.-H. Opt. Mater. 2007, 29,
723.
17 Pawlicki, M.; Collins, H. A.; Denning, R. G.; Anderson, H.
L. Angew. Chem., Int. Ed. 2009, 48, 3244.
18 (a) Ando, Y.; Homma, Y.; Hiruta, Y.; Citterio, D.; Suzuki,
K. Dyes Pigments 2009, 83, 198.
at 800 nm indicates that TPA σ values of T1, T2 and
2
T3 with extended π-conjugated bridge are much larger
than the corresponding chromophore T4 with a short
length bridge, and TPA cross-section of T1 with
end-groups EDOT exhibits a remarkable enhancement
compared with T2 and T3 having the same length π-
system. The chromophores T1, T2 and T3 show also
remarkable up-converted luminescence and optical lim-
iting activity.
References
1
Bouit, P. A.; Wetzel, G.; Berginc, G.; Loiseaux, B.; Toupet,
L.; Feneyrou, P.; Bretonniere, Y.; Kamada, K.; Maury, O.;
Andraud, C. Chem. Mater. 2007, 19, 5325.
2
Barsu, C.; Cheaib, R.; Chambert, S.; Queneau, Y.; Maury,
O.; Cottet, D.; Wege, H.; Douady, J.; Bretonniere, Y.; An-
draud, C. Org. Biomol. Chem. 2010, 8, 142.
(b) Ma, W.; Wu, Y.; Gu, D.; Gan, F. J. Mol. Struct. (Theo-
chem) 2006, 772, 81.
19 (a) Zheng, S.-J.; Beverina, L.; Barlow, S.; Zojer, E.; Fu, J.;
Padilha, L. A.; Fink, C.; Kwon, O.; Yi, Y.-P.; Shuai, Z.-G.;
Van Stryland, E. W.; Hagan, D. J.; Bredas, J.-L.; Marder, S.
R. Chem Commun. 2007, 13, 1372.
3
4
Helmchen, F.; Denk, W. Nat. Methods 2005, 2, 932.
Roy, I.; Ohulchanskyy, T. Y.; Pudavar, H. E.; Bergey, E. J.;
Oseroff, A. R.; Morgan, J.; Dougherty, T. J.; Prasad, P. N. J.
Am. Chem. Soc. 2003, 125, 7860.
5
6
Dvornikov, A. S.; Walker, E. P.; Rentzepis, P. M. J. Phys.
Chem. A 2009, 113, 13633.
(a) Prasad, P. N. Introduction to Biophotonics, Wiley, New
York, 2003.
(b) Li, Q.-Q.; Lu, C.-G.; Zhu, J.; Fu, E.-Q.; Zhong, C.; Li,
S.-Y.; Cui, Y.-P.; Qin, J.-G.; Li, Z. J. Phys. Chem. B 2008,
112, 4545.
20 (a) Wei, P.; Bi, X.; Wu, Z. Org. Lett. 2005, 7, 3199.
(b) Jiang, Z.-Q.; Chen, Y.-H.; Yang, C.-L.; Cao, Y.; Tao,
Y.-T.; Qin, J.-G.; Ma, D.-G. Org. Lett. 2009, 11, 1503
21 (a) Roncali, J.; Blanchard, P.; Frere, P. J. Mater. Chem.
2005, 15, 1589.
(b) Prasad, P. N. Nanophotonics, Wiley, New York, 2004.
(a) Tian, Y.; Chen, C. Y.; Cheng, Y. J.; Young, A. C.;
Tucker, N. M.; Jen, A. K. Y. Adv. Funct. Mater. 2007, 17,
1691.
(b) Morone, M.; Beverina, L.; Abbotto, A.; Silvestri, F.;
Collini, E.; Ferrante, C.; Bozio, R.; Pagani, G. A. Org. Lett.
2006, 8, 2719.
7
(b) Kulkarni, A. P.; Zhu, Y.; Jenekhe, S. A. Macromolecules
2005, 38, 1553.
22 (a) Fred, C. S.; Grace, A. P. J. Org. Chem. 1961, 26, 2778.
(b) Meier, H.; Holst, H. C.; Oehlhof, A. Eur. J. Org. Chem.
2003, 21, 4173.
23 Qian, F.; Zhang, C.; Zhang, Y.; He, W.; Gao, X.; Hu, P.;
Guo, Z. J. Am. Chem. Soc. 2009, 131, 1460.
8
(a) Albota, M.; Beljonne, D.; Brédas, J.-L.; Ehrlich, J. E.; Fu,
J.-Y.; Heikal, A. A.; Hess, S. E.; Kogej, T.; Levin, M. D.;
Marder, S. R.; McCord-Maughon, D.; Perry, J. W.; Röckel,
H.; Rumi, M.; Subramaniam, G.; Webb, W. W.; Wu, X.-L.;
Xu, C. Science 1998, 281, 1653.
24 Tutt, L. W.; Boggess, T. F. J. Quantum Electron. 1993, 17,
229.
(b) Easwaramoorthi, S.; Jang, S. Y.; Yoon, Z. S.; Lim, J. M.;
Lee, C.-W.; Mai, C.-L.; Liu, Y.-C.; Yeh, C.-Y.; Vura-Weis,
(E1103188 Cheng, F.)
Chin. J. Chem. 2011, 29, 2129— 2133
© 2011 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
2133