Diastereoselectivity of Cyclic α,β-Epoxyketone Cyanosylilation Depends on Ring Size
FULL PAPER
1
[6]
[7]
For instance: a) D. A. Evans, L. K. Truesdale, G. L. Caroll, J.
Chem. Soc. Chem. Commun. 1973, 55; b) K. Manju, S. Trehan,
J. Chem. Soc. Perkin Trans. 1 1995, 2383.
mixture (10a/10b = 1:19). 10b: H NMR (CDCl3, 300 MHz): δ =
0.29 (s, 9 H), 1.20–1.76 (m, 6 H), 1.80–2.15 (m, 5 H), 2.27(ddd, J
= 14.6, 6.8, 2.2 Hz, 1 H), 2.87 (dt, J = 10.7, 4.2 Hz, 1 H), 3.27 (d,
J = 4.2 Hz, 1 H) ppm. 13C NMR (CDCl3, 75 MHz): δ = 19.79,
23.36, 24.59, 26.08, 41.61, 56.77, 58.65, 70.10, 122.06 ppm. MS
(70 eV): m/z (%) = 224 (18) [M – CH3]+, 206 (22), 197 (52) [M –
CH3 – HCN]+, 172 (41), 129 (26), 105 (27), 95 (100), 75 (32)
[(CH3)2SiOH]+, 73 (38) [(CH3)3Si]+, 55 (17). 10a: 1H NMR
(CDCl3, 300 MHz): δ = 0.30 (s, 9 H), 1.20–2.35 (m, 10 H), 2.92–
2.97 (m, 2 H) ppm. MS (70 eV): m/z (%) = 224 (43) [M – CH3]+,
197 (96) [M – CH3 – HCN]+, 169 (29), 155 (30), 154 (36), 129 (48),
95 (74), 84 (29), 75 (85) [(CH3)2SiOH]+, 73 (100) [(CH3)3Si]+, 55
(31). C12H21NO2Si (239.39): calcd. C 60.21, H 8.84, N 5.85; found
C 60.34, H 9.09, N 5.76.
See ref.[1] and among others: a) P. Saravanan, R. V. Anand,
V. K. Singh, Tetrahedron Lett. 1998, 39, 3823; b) R. Somana-
than, I. A. Rivero, A. Gama, A. Ochoa, G. Aguirre, Synth.
Commun. 1998, 28, 2043; c) G. Jenner, Tetrahedron Lett. 1999,
40, 491; d) D. E. Ward, M. Hrapechak, M. Sales, Org. Lett.
2000, 2, 57; e) M. L. Kantam, P. Sreekanth, P. L. Santhi, Green
Chem. 2000, 2, 47; f) Z. G. Wang, B. Fetterly, J. G. Verkade, J.
Organomet. Chem. 2002, 646, 16; g) J. S. Yadav, M. S. Reddy,
A. R. Prasad, Tetrahedron Lett. 2002, 43, 9703; h) N. Azizi,
M. R. Saidi, J. Organomet. Chem. 2003, 688, 283; i) S.
Lundgren, S. Lutsenko, C. Jonsson, C. Moberg, Org. Lett.
2003, 5, 3663; j) C. Baleizao, B. Grigante, H. Garna, A. Corma,
J. Catal. 2003, 215, 199; k) J. H. Kim, G. Kim, Catal. Lett.
2004, 92, 123; l) H. Zhou, F. X. Chen, B. Quin, X. Feng, G.
Zhang, Synlett 2004, 1077; m) L. Yan, H. Bin, F. Xiaoming,
Z. Guolin, Synlett 2004, 1598; n) A. Blanrue, R. Wilhelm, Syn-
lett 2004, 2621; o) A. Baeza, C. Nájera, M. D. Retamosa, J. M.
Sansano, Synthesis 2005, 2787.
6-[Trimethylsilyloxy]-6,6a-dihydro-1aH-indene[1,2-b]oxirene-6-car-
bonitrile (11): Colorless oil (21 mg, 0.14 mmol). Yield: 80%. Dia-
stereomeric mixture (11a/11b = 3:1). 11a: 1H NMR (CDCl3,
300 MHz): δ = 0.27 (s, 9 H), 4.23 (d, J = 2,6 Hz, 1 H), 4.32 (d, J
= 2.6 Hz, 1 H), 7.32–7.62 (m, 4 H) ppm. 13C NMR (CDCl3,
50 MHz): δ = 56.91, 57.65, 74.17, 118.66, 125.58, 126.03, 129.80,
130.27, 138.24, 141.81 ppm. MS (70 eV): m/z (%) = 245 (18) [M+·],
230 (100) [M – CH3]+, 217 (48), 203 (47) [M – CH3 – HCN]+, 202
(28), 186 (27), 156 (27), 118 (47), 90 (27), 89 (31), 75 (24) [(CH3)2-
[8]
[9]
R. Córdoba, J. Plumet, Tetrahedron Lett. 2003, 44, 6157.
a) I. Amurrio, R. Córdoba, A. G. Csakÿ, J. Plumet, Tetrahe-
dron 2004, 60, 10521; b) R. Córdoba, A. G. Csakÿ, J. Plumet, F.
López-Ortiz, R. Herrera, H. A. Jiménez-Vázquez, J. Tamariz,
Tetrahedron 2004, 60, 3825.
No other epoxidation reagents were tried.
See Supporting Information for full details.
Calculations of the relative stabilities of compounds 7–11 rule
out the possibility of the thermodynamic equilibration of the
syn and anti isomers, see Table 2.
Review:S. Rendler, M. Oestreich, Synthesis 2005, 1727.
Review:C. Chuit, J. P. Corriu, C. Reye, J. C. Young, Chem. Rev.
1993, 93, 1371.
This coordination step has been proposed in reactions such as
the reduction of carbonyl compounds by hydrosilylation cata-
lyzed by fluoride or formate anions or the TBAF-catalyzed
reaction of allyltrimethylsilane with α,β-unsaturated carbonyl
compounds. See ref.[14], pp. 1423 and 1431.
SiOH]+, 73 (95) [(CH3)3Si]+. 11b: H NMR (CDCl3, 300 MHz): δ
1
[10]
[11]
[12]
= 0.17 (s, 9 H), 4.24 (d, J = 2.4 Hz, 1 H), 4.39 (d, J = 2.4 Hz, 1
H), 7.32–7.62 (m, 4 H) ppm. MS (70 eV): m/z (%) = 245 (6) [M+·],
230 (89) [M – CH3]+, 203 (33) [M – CH3 – HCN]+, 202 (28), 186
(83), 156 (41), 146 (26), 118 (100), 101 (25), 90 (28), 89 (35), 84 (24),
75 (26) [(CH3)2SiOH]+, 73 (26) [(CH3)3Si]+. C13H15NO2Si (245.35):
calcd. C 63.64, H 6.16, N 5.71; found C 63.87, H 6.29, N 5.66.
[13]
[14]
Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures for the synthesis of the starting ep-
oxyketones, stereochemical assignments of new compounds, and
Cartesian coordinates (in Å) and free energies (in a.u.) of all transi-
tion states discussed in the text.
[15]
+
[16]
An additional catalytic effect of the Bu4N cation through co-
ordination to the carbonyl oxygen may also be considered. For
a related report, see: J. M. Blackwell, D. J. Morrison, W. E. Pi-
ers, Tetrahedron 2002, 58, 8247. In any case, this supplementary
catalytic role should not affect the stereochemical result.
H. B. Burgi, J. D. Dunitz, Acc. Chem. Res. 1983, 16, 153.
N. T. Anh, Top. Curr. Chem. 1980, 80, 145.
For a discussion on the interplay of steric and electronic factors
in the nucleophilic addition to carbonyl compounds, see: a)
E. L. Eliel, S. H. Wilen in Stereochemistry of Organic Com-
pounds, John Wiley & Sons, NY, 1994, pp. 875–887; see also:
b) A. S. Cieplak, Chem. Rev. 1999, 99, 1265, in particular, pp.
1317–1320.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr, T. Vreven,
K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tom-
asi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,
G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratch-
ian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gom-
perts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C.
Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A.
Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dap-
prich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick,
A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q.
Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov,
G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin,
D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayak-
kara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen,
Acknowledgments
Ministerio de Educación, Cultura y Deporte, Project BQU2003-
04967 is gratefully thanked for financial support.
[17]
[18]
[19]
[1] For recent reviews see: a) R. J. H. Gregory, Chem. Rev. 1999,
99, 3649; b) M. North, Tetrahedron: Asymmetry 2003, 14, 147;
c) J. M. Brunel, I. Holmes, Angew. Chem. Int. Ed. 2004, 43,
2752; See also: Synthesis and Applications of Non-racemic Cya-
nohydrins and α-Aminonitriles, Tetrahedron Symposium-in-
Print., M. North, Tetrahedron 2004, 60, 10385.
[2] For a recent review on the synthesis of racemic tertiary cya-
nohydrins, see: a) F.-X. Chen, X. Feng, Synlett 2005, 892; For
a recent account on the asymmetric synthesis of phenylketone
cyanohydrins, see: b) J. L. García Ruano, A. M. Martín Castro,
F. Tato, C. Pastor, J. Org. Chem. 2005, 70, 7346, and references
therein.
[20]
[3] For a recent review, see: I. M. Pastor, M. Yus, Curr. Org. Chem.
2005, 9, 1.
[4] In a recent review on the synthetic applications of α,β-epoxy-
ketones, this transformation and these types of compounds
have not been referenced or mentioned, see: a) C. Lauret, Tet-
rahedron: Asymmetry 2001, 12, 2359; on the other hand, the
LiClO4-catalyzed addition of TMSCN to open-chain α,β-ep-
oxyaldehydes has been described, see: b) J. Ipaktschi, A. Heyd-
ari, H. O. Kalinowski, Chem. Ber. 1994, 127, 905.
[5] W. C. Groutas, D. Felker, Synthesis 1980, 861.
Eur. J. Org. Chem. 2006, 3969–3976
© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
3975