Journal of the American Chemical Society
Page 4 of 5
1
2
3
4
5
6
7
8
9
(9)
Sulfonyl hydrazides can be obtianed in one step by re-
action of commercially available sulfonyl chlorides with hydra-
zine.
(10)
gamon: Oxford, 1993; (b) Patai, S.; Rapoport, Z.; Stirling, C. The
Chemistry Functional Groups: Sulfones and Sulfoxides; Wiley:
New york, 1988; c) Organosulfur Chemistry in Asymmetric Syn-
thesis; Toru, T., Bolm, C., Eds.; Wiley-VCH: Weinheim, 2008. d)
El-Awa, A.; NoShi, M. N.; Mollat du Jourdin, X.; Fuchs, P. L.
Chem. Rev. 2009, 109, 2315-2349. e) Alba, A. R.; Companyó, X.;
Rios, R. Chem. Soc. Rev. 2010, 39, 2018-2033.
ACKNOWLEDGMENTS
This work was supported by the DFG, the International Re-
search Training Group “Catalysts and Catalytic Reactions for
Organic Synthesis” (IRTG 1038), the Fonds der Chemischen
Industrie and the Krupp Foundation. We thank Umicore,
BASF and Wacker for generous gifts of chemicals.
(a) Simpkins, N. S. Sulfones in Organic Synthesis; Per-
REFERENCES
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(1)
Reviews on transition-metal-catalyzed allylic substitu-
tion: (a) Trost, B. M. Chem. Rev. 1996, 96, 395–422. (b) Trost, B.
M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921–2943. (c) Lu, Z.;
Ma, S. Angew. Chem., Int. Ed. 2008, 47, 258–297.
(11)
(a) Chen, X.; Hussain, S.; Parveen, S.; Xhang, S.; Yang,
Y.; Zhu, C. Curr. Med. Chem. 2012, 19, 3578-3604. (b) Morgan, A.
S.; Sanderson, P. E.; Borch, R. F.; Tew, K. D.; Niitsu, Y.; Takaya-
ma, T.; Von Hoff, D. D.; Izbicka, E.; Mangold, G.; Paul, C.; Brob-
erg, U.; Mannervik, B.; Henner, W. D.; Kauvar, L. M. Cancer Res.
1998, 58, 2568-2575. (c) Reck, F.; Zhou, F.; Girardot, M.; Kern, G.;
Eyermann, C. J.; Hales, N. J.; Ramsay, R. R.; Gravestock, M. B. J.
Med. Chem. 2005, 48, 499-506. (d) Bohl, E. C.; Gao, W.; Miller,
D. D.; Bell, C. E.; Dalton, J. T. Proc. Natl. Acad. Sci. 2005, 102,
6201-6206. (e) Percicot, C. L; Schnell, C. R.; Debon, C.; Hariton,
C. J. Pharmacol. Toxicol. Methods 1996, 36, 223-228. (f) Buynak, J.
D.; Doppalapudi, V. R.; Rao, A. S.; Nidamarthy, S. D.; Adam, G.
Bioorg. Med. Chem. Lett. 2000, 10, 847-851. (g) Pilkiewicz, F. G.;
Boni, L.; Mackinson, C.; Portnoff, J. B.; Scotto, A. An inhalation
system for prevention and treatment of intracellular infections.
WO 2003075889 A1, Sep 18, 2003.
(2)
Transition-metal-catalyzed allylic C-H functionaliza-
tion: (a) Liu, G.; Wu, Y. Top. Curr. Chem. 2010, 292, 195-209. (b)
Chen, M. S; White, M. C. J. Am. Chem. Soc. 2004, 126, 1346-1347.
(c) Liu, G.; Stahl, S. S. J. Am. Chem. Soc. 2007, 129, 6328–6335. (d)
Yin, G.; Wu, Y.; Liu, G. J. Am. Chem. Soc. 2010, 132, 11978–11987.
(3)
Coupling of pronucleophiles with allenes: (a) Yamamo-
to, Y.; Al-Masum, M.; Asao, N. J. Am. Chem. Soc. 1994, 116, 6019–
6020. (b) Al-Masum, M.; Yamamoto, Y. J. Am. Chem. Soc. 1998,
120, 3809–3810. (c) Zimmer, R.; Dinesh, C.; Nandanan, E.; Khan,
A. F. Chem. Rev. 2000, 100, 3067–3125. (d) Johnson, J.; Bergman,
R. G. J. Am. Chem. Soc. 2001, 123, 2923–2924. (e) Trost, B. M.;
Jakel, C.; Plietker, B. J. Am. Chem. Soc. 2003, 125, 4438–4439. (f)
Nishina, N.; Yamamoto, Y. Angew. Chem., Int. Ed. 2006, 45, 3314–
3317. (g) Lalonde, R. L.; Sherry, B. D.; Kang, E. J.; Toste, F. D. J.
Am. Chem. Soc. 2007, 129, 2352–2453. (h) Kim, I. S.; Krische, M. J.
Org. Lett. 2008, 10, 513–515. (i) Kawamoto, T.; Hirabayashi, S.;
Guo, X.; Nishimura, T.; Hayashi, T. Chem. Commun. 2009, 3528–
3530. (j) Han, S. B.; Kim, I. S.; Han. H.; Krische, M. J. J. Am.
Chem. Soc. 2009, 131, 6916–6917. (k) Moran, J.; Preetz, A.; Mesch,
R. A.; Krische, M. J. Nature Chem. 2011, 3, 287–290. (l) Butler, K.
L.; Tragni, M.; Widenhoefer, R. A. Angew. Chem., Int. Ed. 2012,
51, 5175–5178.
(12)
(a) Jegelka, M.; Plietker, B. Org. Lett. 2009, 11, 3462-
3465. (b) Ueda, M.; Hartwig, J. F. Org. Lett. 2010, 12, 92-94. (c)
Jegelka, M.; Plietker, B. Chem. Eur. J. 2011, 17, 10417-10430. (d)
Wu, X.; Chen, Y.; Li, M.; Zhou, M.; Tian, S. J. Am. Che. Soc. 2012,
134, 14694-14697.
(13)
(14)
yl)benzenesulfonohydrazide under optimized condition (both
without and with 50% benzoic acid) only led to decomposition,
which indicates that nitrogen attack of the sulfonyl hydrazide to
the in situ formed rhodium-allyl benzoate species A2 followed by
releasing of nitrogen and hydrogen is unlikely.
See supporting information.
Control experiments of 4-methyl-N'-(oct-1-en-3-
(4)
(a) Koschker, P.; Lumbroso, A.; Breit, B. J. Am. Chem.
Soc. 2011, 133, 20746–20749. (b) Cooke, M. L.; Xu, K.; Breit, B.
Angew. Chem., Int. Ed. 2012, 51, 10876–10879. (c) Li, C.; Breit, B. J.
Am. Chem. Soc. 2014, 136, 862-865. (d) Xu, K.; Thieme, N.; Breit,
B. Angew. Chem., Int. Ed. 2014, 53, 2162-2165. (d) Xu, K.; Thieme,
N.; Breit, B. Angew. Chem., Int. Ed. 2014, 53, 7268-7271.
(5)
Examples on the coupling of pronucleophiles with al-
kynes for the synthesis of allylic products: (a) Trost, B. M;
Brieden, W. Angew. Chem., Int. Ed. Engl. 1992, 31, 1335-1336. (b)
Lutete, L. M.; Kadota, I.; Yamamoto, Y. J. Am. Chem. Soc. 2004,
126, 1622–1623.
(6)
(a) Lumbroso, A.; Koschker, P.; Vautravers, N. R.; Breit,
B. J. Am. Chem. Soc. 2011, 133, 2386–2389. (b) Lumbroso, A.;
Abermil, N.; Breit, B. Chem. Sci. 2012, 3, 789-793. (c) Gellrich, U.;
Meißner, A.; Steffani, A.; Kähny, M.; Drexler, H.; Heller, D.;
Plattner, D. A.; Breit, B. J. Am. Chem. Soc. 2014, 136, 1097-1104.
(7)
(a) Ballini, R.; Marcantoni, E.; Petrini, M. Tetrahedron
1989, 45, 6791-6798. (b) Wang, T.; Wang, F.; Yang, F.; Tian, S.
Chem. Commun., 2014, 50, 3802-3805. c) Taniguchi, T.; Idota, A.;
Ishibashi, H. Org. Biomol. Chem. 2011, 9, 3151-3153. d) Yang, F.;
Ma, X.; Tian, S. Chem. Eur. J. 2012, 18, 1582-1585. e) Wei, W.; Liu,
C.; Yang, D.; Wen, J.; You, J.; Suo, Y.; Wang, H. Chem. Commun.
2013, 49, 10239-10241.
(8)
(a) Evans, P. A.; Nelson, J. D. J. Am. Chem. Soc. 1998,
120, 5581-5582; (b) Wucher, B.; Moser, M.; Schumacher, S. A.;
Rominger, F.; Kunz, D. Angew. Chem. Int. Ed. 2009, 48, 4417-4421.
ACS Paragon Plus Environment