S. Zhang et al. / Tetrahedron Letters 51 (2010) 3317–3319
3319
References and notes
N
1. For representative reviews on C–H functionalization, see: (a) Dick, A. R.;
Sanford, M. S. Tetrahedron 2006, 62, 2439; (b) Daugulis, O.; Zaitsev, V. G.;
Shabashov, D.; Pham, Q. N.; Lazareva, A. Synlett 2006, 3382; (c) Alberico, D.;
Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174; (d) Li, B. J.; Yang, S. D.; Shi, Z.
J. Synlett 2008, 949; (e) Crabtree, R. H. J. Organomet. Chem. 2004, 689, 4083; (f)
Kakiuchi, F. Top. Organomet. Chem. 2008, 24, 1; (g) Lewis, J. C.; Bergman, R. G.;
Ellman, J. A. Acc. Chem. Res. 2008, 41, 1013; (h) Goj, L. A.; Gunnoe, T. B. Curr. Org.
Chem. 2005, 9, 671; (i) Park, Y. J.; Park, J. W.; Jun, C. H. Acc. Chem. Res. 2008, 41,
222; (j) Mori, C. A.; Sugie, A. Bull. Chem. Soc. Jpn. 2008, 81, 548; (k) Diaz-
Requejo, M. M.; Pérez, P. J. Chem. Rev. 2008, 108, 3379; (l) Dyker, G. Handbook of
C–H Transformations. Applications in Organic Synthesis; Wiley-VCH: Weinheim,
2005; (m) Chatani, N. Directed Metallation; Springer: Berlin, 2008; Vol. 24; (n)
Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624; (o) Belina,
F.; Rossi, R. Chem. Rev. 2010, 110, 1082; (p) Lyons, T. W.; Sanford, M. S. Chem.
Rev. 2010, 110, 1147.
2. (a) Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300; (b)
Kalyani, D.; Sanford, M. S. Org. Lett. 2005, 7, 4149; (c) Fu, Y.; Li, Z.; Liang, S.; Guo,
Q.-X.; Liu, L. Organometallics 2008, 27, 3736; (d) Yoneyama, T.; Crabtree, R. H. J.
Mol. Catal. A: Chem. 1996, 108, 35; (e) Desai, L. V.; Malik, H. A.; Sanford, M. S.
Org. Lett. 2006, 8, 1141; (f) Reddy, B. V. S. L.; Reddy, R.; Corey, E. J. Org. Lett.
2006, 8, 3391; (g) Hull, K. L.; Lanni, E. L.; Sanford, M. S. J. Am. Chem. Soc. 2006,
128, 14047; (h) Wang, G.-W.; Yuan, T.-T.; Wu, X.-L. J. Org. Chem. 2008, 73, 4717;
(i) Desai, L. V.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 9542; (j)
Wang, D.-H.; Hao, X.-S.; Wu, D.-F.; Yu, J.-Q. Org. Lett. 2006, 8, 3387.
3. Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 6790.
4. Racowski, J. M.; Dick, A. R.; Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 10974.
5. Ye, Z.; Wang, W.; Luo, F.; Zhang, S.; Cheng, J. Org. Lett. 2009, 11, 3974.
6. (a) Giri, R.; Liang, J.; Lei, J.-G.; Li, J.-J.; Wang, D.-H.; Chen, X.; Naggar, I. C.; Guo,
C.; Foxman, B. M.; Yu, J.-Q. Angew. Chem., Int. Ed. 2005, 44, 7420; (b) Chen, X.; Li,
J.-J.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 78; (c) Yu, J.-
Q.; Giri, R.; Chen, X. Org. Biomol. Chem. 2006, 4, 4041; (d) Shi, B.-F.; Maugel, N.;
Zhang, Y. H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 1; (e) Dick, A. R.; Kampf, J.
W.; Sanford, M. S. J. Am. Chem. Soc. 2005, 127, 12790; (f) Hull, K. L.; Anani, W.
Q.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 7134.
7. (a) Desai, L. V.; Stowers, K. J.; Sanford, M. S. J. Am. Chem. Soc. 2008, 130, 13285;
(b) Dick, A. R.; Kampf, J. W.; Sanford, M. S. Organometallic 2005, 24, 482; (c) Gu,
S.; Chen, C.; Chen, W. Z. J. Org. Chem. 2009, 74, 7203; (d) Ball, N. D.; Sanford, M.
S. J. Am. Chem. Soc. 2009, 131, 3796; (e) Kalyani, D.; Dick, A. R.; Anani, W. Q.;
Sanford, M. S. Tetrahedron 2006, 62, 11483; (f) Alexanian, E. J.; Lee, C.; Sorensen,
E. J. J. Am. Chem. Soc. 2005, 127, 7690; (g) Gou, F.-R.; Wang, X.-C.; Huo, P.-F.; Bi,
H.-P.; Guan, Z.-H.; Liang, Y.-M. Org. Lett. 2009, 11, 5726.
Pd(II)
N
O
RE
O
Ar
iii
i
O
N
Pd(II)
A
IV
Pd
2
Ar
O
N
B
AcO
ii
PhI(OCOAr)2
ArCOOH
PhI(OAc)2
ligand was omitted for clarity
Scheme 2. Plausible mechanism.
a plausible mechanism was outlined in Scheme 2. To start with,
step (i) involves the chelation-assisted sp3 C–H activation of benzyl
to form a cyclopalladated intermediate A. Secondly, the Pd(II)
intermediate A is oxidized by PhI(OCOAr)2, which derives from
the reaction of PhI(OAc)2 and ArCOOH,9 to form a Pd(IV) interme-
diate B. Finally, in step (iii), the reductive elimination of the Pd(IV)
intermediate B takes place to deliver the acyloxylation product and
regenerates Pd(II) species. It should be noted that a mechanism of
Pd(0)/Pd(II) circle could not be completely excluded.10
In summary, we have developed a general and efficient chela-
tion-assisted palladium-catalyzed acyloxylation reaction of the
benzyl sp3 C–H bond, providing the mono or di-acyloxylation prod-
ucts in moderate to good yields. Works focusing on exploring fur-
ther insights into the mechanism of the reaction and expanding the
reaction scope to unactivated sp3 C–H in more substrates are ongo-
ing in our laboratory.11
8. (a) Welbes, L. L.; Lyons, T. W.; Cychosz, K. A.; Sandford, M. S. J. Am. Chem. Soc.
2007, 129, 5836; (b) Liu, G.; Stahl, S. S. J. Am. Chem. Soc. 2006, 128, 7179; (c)
Deprez, N. R.; Sanford, M. S. Inorg. Chem. 2007, 46, 1924; (d) Steuff, J.;
Hovelmann, C. H.; Nieger, M.; Muniz, K. J. Am. Chem. Soc. 2005, 127, 14586; (e)
Neufeldt, S. R.; Sanford, M. S. Org. Lett. 2010, 12, 532.
9. (a) Stang, P.-J.; Boehshar, M.; Wingert, H.; Kitamura, T. J. Am. Chem. Soc. 1988, 110,
3272; (b) Sharefkin, J.; Salzman, G. Org. Synth. 1973, 5, 660; (c) Varvoglis, A.
Hypervalent Iodine In Organic Synthesis; Academic Press: Oxford, 1997. pp. 11–12.
10. Zhang, J.; Khaskin, E.; Anderson, N. P.; Zavalij, P. Y.; Verdernikov, A. Chem.
Commun. 2008, 31, 3625.
Acknowledgments
11. General procedure: Under air atmosphere, a reaction tube was charged with
substrates (0.2 mmol), carboxylic acid (0.4 mmol), Pd(OAc)2 (4.5 mg, 10 mol %),
PhI(OAc)2 (64.4 mg, 1 equiv), and dry toluene (2 mL). The mixture was stirred
at 120 °C for 24 h. After completion of the reaction, as monitored by TLC, the
solvent was concentrated in vacuo and the residue was purified by flash
column chromatography on silica gel to give the desired product.
We thank the National Natural Science Foundation of China
(No. 20504023) and the Key Project of Chinese Ministry of Educa-
tion (No. 209054) for financial support.
Supplementary data
Supplementary data associated with this article can be found, in