6464
T. Takeuchi et al. / Tetrahedron Letters 49 (2008) 6462–6465
Acid
HO
H
(–)-centrolobine (1)
chiral 13
OH OH
MeO
OBn
MeO
OBn
iii
iv
Figure 4. Synthetic plan for (ꢀ)-1 via cyclization of diol iii.
BF3·Et2O
MS 4A
LiAlH4
O
20
OH OH
H
H
MeCN, –40 °C
Et2O, 0 °C
50%
MeO
OBn
93%
MeO
OBn
(2 steps from 3)
13 (99% ee)
21
Scheme 3.
mixture of hemiacetal 12a and ketone 12b (ca. 1:1.8 ratio in CDCl3)
in 96% or 97% yield, respectively. Treatment of 12 with Et3SiH in
the presence of BF3ꢁEt2O15 effected reductive etherification to give
References and notes
1. (a) De Albuquerque, I. L.; Galeffi, C.; Casinovi, C. G.; Marini-Bettòlo, G. B. Gazz.
Chim. Ital. 1964, 287–295; (b) Galeffi, C.; Casinovi, C. G.; Marini-Bettòlo, G. B.
Gazz. Chim. Ital. 1965, 95–100; (c) Aragão Craveiro, A.; da Costa Prado, A.;
Gottlieb, O. R.; Welerson de Albuquerque, P. C. Phytochemistry 1970, 9, 1869–
1875.
2. Alcântara, A. F. deC.; Souza, M. R.; Piló-Veloso, D. Fitoterapia 2000, 71, 613–615.
3. (a) Jurd, L.; Wong, R. Y. Aust. J. Chem. 1984, 37, 1127–1133; (b) Araujo, C. A. C.;
Alegrio, L. V.; Leon, L. L. Phytochemistry 1998, 49, 751–754.
4. (a) Colobert, F.; Mazery, R. D.; Solladié, G.; Carreño, M. C. Org. Lett. 2002, 4,
1723–1725; (b) Carreño, M. C.; Mazery, R. D.; Urbano, A.; Colobert, F.; Solladié,
G. J. Org. Chem. 2003, 68, 7779–7787.
5. (a) Clarke, P. A.; Martin, W. H. C. Tetrahedron Lett. 2004, 45, 9061–9063; (b)
Clarke, P. A.; Martin, W. H. C. Tetrahedron 2005, 61, 5433–5438; (c) Sabita, G.;
Reddy, K. B.; Reddy, G. S. K. K.; Fatima, N.; Yadav, J. S. Synlett 2005, 2347–2351;
(d) Pham, M.; Allatabakhsh, A.; Minehan, T. G. J. Org. Chem. 2008, 73, 741–
744.
6. (a) Marumoto, S.; Jaber, J. J.; Vitale, J. P.; Rychnovsky, S. D. Org. Lett. 2002, 4,
3919–3922; (b) Evans, P. A.; Cui, J.; Gharpure, S. J. Org. Lett. 2003, 5, 3883–3885;
(c) Boulard, L.; BouzBouz, S.; Cossy, J.; Franck, X.; Figadère, B. Tetrahedron Lett.
2004, 45, 6603–6605; (d) Lee, E.; Kim, H. J.; Jang, W. S. Bull. Korean Chem. Soc.
2004, 25, 1609–1610; (e) Jennings, M. P.; Clemens, R. T. Tetrahedron Lett. 2005,
46, 2021–2024; (f) Chandrasekhar, S.; Prakash, S. J.; Shyamsunder, T.
Tetrahedron Lett. 2005, 46, 6651–6653; (g) Chan, K.-P.; Loh, T.-P. Org. Lett.
2005, 7, 4491–4494; (h) Böhrsch, V.; Blechert, S. Chem. Commun. 2006, 1968–
1970; (i) Lee, C.-H.; Loh, T.-P. Tetrahedron Lett. 2006, 47, 1641–1644; (j) Prasad,
K. R.; Anbarasan, P. Tetrahedron 2007, 63, 1089–1092; (k) Washio, T.;
Yamaguchi, R.; Abe, T.; Nambu, H.; Anada, M.; Hashimoto, S. Tetrahedron
2007, 63, 12037–12046; (l) Dziedzic, M.; Furman, B. Tetrahedron Lett. 2008, 49,
678–681.
7. Saito, T.; Takeuchi, T.; Matsuhashi, M.; Nakata, T. Heterocycles 2007, 72, 151–
156.
8. Babudri, F.; Fiandanese, V.; Marchese, G.; Punzi, A. Tetrahedron 1996, 52,
13513–13520.
9. Corey, E. J.; Helal, C. J. Angew. Chem., Int. Ed. 1998, 37, 1986–2012.
10. The enantiomeric excess (ee) was determined by HPLC (Daicel Chiralcel OD-H,
2-propanol/n-hexane = 1:15).
11. Lewin, A. H.; Szewczyk, J.; Wilson, J. W.; Carroll, F. I. Tetrahedron 2005, 61,
7144–7152.
12. Shiina, I.; Kubota, M.; Oshiumi, H.; Hashizume, M. J. Org. Chem. 2004, 69, 1822–
1830.
13. Garegg, P. J.; Samuelsson, B. J. Chem. Soc., Chem. Commun. 1979, 978–
980.
14. For intramolecual Barbier-type reaction of iodo-esters with organolithiums,
see: (a) Cooke, M. P., Jr.; Houpis, I. N. Tetrahedron Lett. 1985, 26, 4987–4990; (b)
Ohtsuki, K.; Matsuo, K.; Yoshikawa, T.; Moriya, C.; Tomita-Yokotani, K.;
Shishido, K.; Shindo, M. Org. Lett. 2008, 10, 1247–1250.
15. Lewis, M. D.; Cha, J. K.; Kishi, Y. J. Am. Chem. Soc. 1982, 104, 4976–4978.
16. (a) Kametani, T.; Takahashi, K.; Loc, C. V. Tetrahedron 1975, 31, 235–238; (b)
Kihara, M.; Iguchi, S.; Imakuma, Y.; Kobayashi, S. Heterocycles 1989, 29, 1097–
1105.
2,6-syn-tetrahydropyran 13 in 64% yield. However, the [a] value
D
of 13 was 0; that is, the product 13 is unfortunately racemic. Thus,
hydrogenolysis of the benzyl ether 5 gave racemic centrolobine (1).
This racemization presumably takes place as follows ( Fig. 3).
Removal of the hydroxyl group of 12b with BF3ꢁEt2O would easily
proceed owing to the effect of the electron-donating MeO group;16
thus, the chirality of 12 would be lost at this stage. Then, the
carbonyl oxygen would attack the diene-oxonium ion i to give
tetrahydropyran oxonium ion ii. Subsequent reduction of the
oxonium ion ii with Et3SiH would provide racemic 13.
Next, we examined the other route B, in which no epimerization
was expected (Scheme 2). The synthesis commenced with the
known chiral epoxide 15,17 which was prepared starting from
L-glutamic acid (14). Coupling of the epoxide 15 and Grignard
reagent 16 in the presence of CuI in THF afforded (R)-alcohol 17
(99% ee),10 quantitatively.18 The Mitsunobu reaction19 of 17 with
p-methoxybenzoic acid (18) in the presence of DEAD and Ph3P
effected esterification accompanied with inversion of the hydroxyl
group to give an ester, which was treated with CSA in MeOH to give
alcohol 19 in 90% yield (2 steps). After iodination of 19 (98% yield),
treatment of the resulting 3 with n-BuLi or t-BuLi afforded an equi-
librium mixture of hemiacetal 20a and ketone 20b (ca. 1:1.1 ratio
in CDCl3), which was subjected to BF3ꢁEt2O-mediated Et3SiH reduc-
tion to give optically active 2,6-syn-tetrahydropyran 13 in 67% or
50% yield (2 steps), respectively. Finally, hydrogenolysis of 13 on
Pd/C in EtOH-EtOAc afforded (ꢀ)-centrolobine (1) (98% ee)20 in
88% yield. The spectral data of synthetic (–)-121 were identical with
those of natural centrolobine (1).
Treatment of 12b with BF3ꢁEt2O promoted removal of the hy-
droxyl group as shown in Figure 3. Thus, when diol iii, which
should be formed by reduction of 20, is treated with acid, removal
of the hydroxyl group and intramolecular addition of the hydroxyl
group in iv should proceed successively to give optically active 2,6-
syn-tetrahydropyran 13, from which (ꢀ)-centrolobine (1) can be
obtained ( Fig. 4). Therefore, this synthetic route was examined
(Scheme 3). LiAlH4 reduction of the mixture 20, prepared from 3
by n-BuLi treatment, afforded diol 21 in 50% yield (2 steps). After
several attempts at cyclization, it was found that treatment of diol
21 with BF3ꢁEt2O in the presence of MS 4A in MeCN at ꢀ40 °C affor-
ded optically active tetrahydropyran 13 (99% ee)22 in 93% yield.23
In summary, total synthesis of (ꢀ)-cetrolobine (1) was accom-
plished via an intramolecular Barbier-type cyclization of iodo-ester
3 with n- or t-BuLi, followed by BF3ꢁEt2O-mediated Et3SiH reduc-
tion of the resulting hemiacetal.
17. (a) Ravid, U.; Silverstein, R. M.; Smith, L. R. Tetrahedron 1978, 34, 1449–1452;
(b) Andreou, T.; Costa, A. M.; Esteban, L.; Gonzalez, L.; Mas, G.; Vilarrasa, J. Org.
Lett. 2005, 7, 4083–4086.
18. Pandey, S. K.; Kumar, P. Eur. J. Org. Chem. 2007, 369–373.
19. (a) Mitsunobu, O.; Yamada, M. Bull. Chem. Soc. Jpn. 1967, 40, 2380–2382; (b)
Mitsunobu, O. Synthesis 1981, 1–28; (c) Hughes, D. L. Org. React. 1992, 42, 335–
656; (d) Martin, S. F.; Dodge, J. A. Tetrahedron Lett. 1991, 32, 3017–3020.
20. The enantiomeric excess (ee) was determined by HPLC analysis (Daicel
Chiralpak AD-H, 2-propanol/n-hexane = 1:15).