A. Kamal et al. / Bioorg. Med. Chem. Lett. 15 (2005) 613–615
615
references cited therein; (c) Noyori, R.; Ohkuma, T.;
Kitamura, M.; Takaya, H.; Sayo, N.; Kumobayashi, H.;
Akutagawa, S. J. Am. Chem. Soc. 1987, 109, 5856; (d)
Soai, K.; Yamanoi, T.; Hikima, H.; Oyamada, H. J.
Chem. Soc., Chem. Commun. 1985, 138, and references
cited therein; (e) Mukaiyama, T.; Tomimori, K.; Oriyama,
T. Chem. Lett. 1985, 813, and references cited therein; (f)
Cohen, S. G.; Weinstein, S. Y. J. Am. Chem. Soc. 1964, 86,
725; (g) Manzocchi, A.; Casati, R.; Fiecchi, A.; Santan-
iello, E. J. Chem. Soc., Perkin Trans. 1 1987, 2753.
11. (a) Ager, D. J.; Prakash, I.; Schaad, D. Chem. Rev. 1996,
96, 835; (b) Enders, D.; Hartwig, A.; Raabe, G.; Runsink,
J. Angew. Chem., Int. Ed. 1996, 35, 2388.
CHCl3) on treating with SOCl2 in CH2Cl2 with double
inversion at the chiral center in about 50% yield.
In summary, a simple, practical and highly enantioselec-
tive synthesis of levamisole has been accomplished by
employing (R)-3-acetoxy-3-phenylpropanenitrile and
(R)-3-hydroxy-3-phenylpropanenitrile obtained by both
enzymatic transesterification and hydrolysis processes.
Acknowledgements
12. (a) Narasaka, K.; Pai, F.-C. Tetrahedron 1984, 40, 2233;
(b) Evans, D. A.; Chapman, K. T.; Carreira, M. J. Am.
Chem. Soc. 1988, 110, 3560; (c) Haddad, M.; Dorbais, J.;
Larcheveque, M. Tetrahedron Lett. 1997, 38, 5981; (d)
Narasaka, K.; Ukaji, Y.; Yamazaki, S. Bull. Chem. Soc.
Jpn. 1986, 59, 525.
The authors G.B.R.K., T.K. and R.R. are thankful to
CSIR, New Delhi for the award of research fellowship.
References and notes
13. (a) Kamal, A.; Khanna, G. B. R. Tetrahedron: Asymmetry
2001, 12, 405; (b) Kamal, A.; Khanna, G. B. R.; Ramu, R.
Tetrahedron: Asymmetry 2002, 13, 2039; (c) Kamal, A.;
Khanna, G. B. R.; Ramu, R.; Krishnaji, T. Tetrahedron
Lett. 2003, 44, 4783.
1. (a) Thienpont, D. C. I.; Vanparijs, O.; Raeymaekers, A.;
Vandenberk, J.; Demoen, P.; Allewijn, F.; Marsboom, R.;
Niemegeers, C.; Schellekens, K.; Janssen, P. Nature 1966,
209, 1084; (b) Raeymaekers, A. H. M.; Allewijn, F. T. N.;
Vandenberk, J.; Demoen, P. J. A.; Van Offenwert, T. T.
T.; Janssen, P. A. J. J. Med. Chem. 1966, 9, 545.
14. 1R: IR (Neat) 3438, 3046, 3015, 2954, 2923, 2892, 2238,
1
1115, 1092 cmꢁ1; H NMR (200 MHz, CDCl3) d 2.67 (d,
2. (a) Janssen, P. A. J. Prog. Drug Res. 1976, 20, 347; (b)
Cazin, J. C.; Lesieur, D.; Cazin, M.; Lesieur, I.; Luyckx,
M.; Devulder, B.; Plouvier, B.; Rousseau, F. Bull. Soc.
Pharm. Lille 1978, 1, 17.
2H, J = 7.23 Hz), 3.15 (br s, 1H), 4.94 (t, 1H, J = 5.78),
7.35 (s, 5H); Mass (EI) 147 (M+), 121, 107, 105, 91, 79, 77.
2R: mp 121–124 °C; IR (KBr) 3054, 3008, 2961, 2923,
1
2254, 1738, 1238, 1200, 1046 cmꢁ1; H NMR (200 MHz,
3. (a) Moertal, G. G.; Fleming, T. R.; Macdonald, J. S. Anal.
Int. Med. 1995, 122, 321; (b) Moertal, G. G.; Fleming, T.
R.; Macdonald, J. S. New Engl. J. Med. 1990, 322, 352; (c)
Gwilt, P.; Tempero, M.; Kremer, A.; Connolly, M.; Ding,
C. Cancer Chemother. Pharmacol. 2000, 45, 247.
4. Raeymaekers, A. H. M.; Roevens, L. F. C.; Janssen, P. A.
J. Tetrahedron Lett. 1967, 1467.
5. (a) Sakuraba, S.; Takahashi, H.; Takeda, H.; Achiwa, K.
Chem. Pharm. Bull. 1995, 43, 738; (b) Takeda, H.;
Tachinami, T.; Aburatani, M.; Takahashi, H.; Morimoto,
T.; Achiwa, K. Tetrahedron Lett. 1988, 30, 363.
6. (a) Dittus, G. In Methoden Der Organishen Chemie
(Huben-Weyl); Muller, E., Ed.; Georg Thieme: Stutgart,
1965; Vol. 6/3, p 451; (b) Henecka, H., Erwin, O. In
Methoden der Organishen Chemie (Huben-Weyl), 4th ed.;
Muller, E., Ed.; Georg Thieme: Stutgart, 1952; Vol. 8, pp
427–661.
7. (a) Seidel, W.; Seebach, D. Tetrahedron Lett. 1982, 23,
159; (b) Meyers, A. I.; Amos, R. A. J. Am. Chem. Soc.
1980, 102, 870; (c) Ha, D. C.; Hart, D. J. Tetrahedron Lett.
1987, 28, 4489; (d) Kramer, A.; Pfander, H. Helv. Chim.
Acta 1982, 65, 293; (e) Amstutz, R.; Hungerbuhler, E.;
Seebach, D. Helv. Chim. Acta 1981, 64, 1796.
8. (a) Challis, B. C.; Challis, J. A. In Comprehensive Organic
Chem.; Pergamon: Oxford, 1979; Vol. 2, p 957; (b)
Simons, S. S., Jr. J. Org. Chem. 1973, 38, 414; (c) Quiros,
M.; Rebolledo, F.; Liz, R.; Gotor, V. Tetrahedron: Asym-
metry 1997, 8, 3035; (d) Garcia, M. J.; Rebolledo, F.;
Gotor, V. Tetrahedron: Asymmetry 1992, 3, 1519; (e)
Garcia, M. J.; Rebolledo, F.; Gotor, V. Tetrahedron:
Asymmetry 1993, 4, 2199; (f) Kumar, A.; Ner, D. H.; Dike,
S. Y. Tetrahedron Lett. 1991, 32, 1901.
9. (a) Muller, H. M.; Seebach, D. Angew. Chem., Int. Ed.
Engl. 1993, 32, 477, and references cited therein; (b) Zhou,
B. N.; Gopalan, A. S.; VanMiddlesworth, F.; Shieh, W.
R.; Sih, C. J. J. Am. Chem. Soc. 1983, 105, 5925; (c) Boaz,
N. W. J. Org. Chem. 1992, 57, 4289.
CDCl3) d 2.15 (s, 3H), 2.86 (d, 2H, J = 5.52 Hz), 5.94 (t,
1H, J = 5.52 Hz), 7.35 (s, 5H); Mass (EI) 189, 162, 149,
130, 120, 107, 77. 3R: mp 101–103 °C; IR (KBr) 3377,
3300, 3177, 2961, 2900, 2761, 1623, 1431, 1392, 1331,
1046 cmꢁ1; 1H NMR (200 MHz, CD3OD) d 2.41–2.70 (m,
2H), 4.93–5.11 (m, 1H), 7.20–7.40 (m, 5H); Mass (EI) 165,
141, 120, 105, 91, 77, 59. 4S: mp 92–94 °C; IR (Neat) 3262,
2933, 2902, 2839, 1718, 1239, 1082, 972 cmꢁ1
;
1H
NMR (200 MHz, CDCl3) d 3.55 (t, 1H, J = 8.2 Hz), 3.99
(t, 1H, J = 8.2 Hz), 5.60 (t, 1H, J = 7.3 Hz), 6.67 (br
s, 1H), 7.28–7.40 (m, 5H); Mass (EI) 163 (M+), 118, 107,
29
105, 91, 79, 77. 5S: mp 57–59 °C; lit.15 ½aꢀD ¼ þ45:5 (c
23
1.5, EtOH); ½aꢀD ¼ þ47:9 (c 1.5, EtOH); IR (Neat) 3412,
3349, 3318, 2941, 2902, 2862, 1082, 1004 cmꢁ1
;
1H
NMR (300 MHz, CDCl3) d 2.78 (dd, 1H, J1 = 7.7 Hz,
J2 = 12.6 Hz), 2.98 (dd, 1H, J1 = 3.8 Hz, J2 = 12.6 Hz),
4.58 (dd, 1H, J1 = 3.8 Hz, J2 = 7.7 Hz), 7.21–7.30 (m, 5H);
28
Mass (EI) 106, 90, 78, 77, 51. 6S: ½aꢀD ¼ þ67:4 (c 1.1,
CHCl3); IR (Neat) 3373, 3059, 3027, 2957, 2925, 2886,
2855, 1247, 1098, 1058 cmꢁ1; 1H NMR (300 MHz, CDCl3)
d ꢁ0.16 (s, 3H), 0.00 (s, 3H), 0.86 (s, 12H), 2.74 (d, 2H,
J = 5.6 Hz), 4.57 (t, 1H, J = 5.6 Hz), 7.15–7.27 (m, 5H);
Mass (EI) 251 (M+), 236, 222, 194, 155, 141, 102, 91, 77,
73. 7S: IR (Neat) 2941, 2910, 2870, 2847, 1741, 1247,
1105, 1059, 1035 cmꢁ1 1H NMR (300 MHz, CDCl3) d
;
ꢁ0.19 (s, 3H), 0.00 (s, 3H), 0.84 (s, 12H), 3.23–3.31 (m,
3H), 3.57–3.65 (m, 1H), 4.13–4.20 (m, 2H), 4.88 (t, 1H,
J = 6.2 Hz), 7.19–7.30 (m, 5H); Mass (EI) 264
(M+ꢁCH2Cl), 222, 155, 141, 102, 77, 73, 44. 8S:
mp 135–137 °C; IR (Neat) 3357, 3027, 2988, 2925, 2847,
1
1710, 1451, 1255, 1082, 1051 cmꢁ1; H NMR (200 MHz,
DMSO (D6)) d 3.22–3.42 (m, 2H), 3.46–3.58 (m, 1H),
3.70–3.82 (m, 1H), 4.21–4.30 (m, 2H), 4.76–4.85 (m, 1H),
5.30 (br s, 1H), 7.22–7.39 (m, 5H); Mass (EI) 200, 107,
101, 79, 77, 56, 51. 9S: 1H NMR (300 MHz, CDCl3) d
3.26–3.60 (m, 3H), 3.65–3.80 (m, 2H), 4.04 (t, 1H,
J = 8.75 Hz), 5.48 (t, 1H, J = 8.23 Hz), 7.24–7.33 (m,
5H); Mass (EI) 178 (M+ꢁC2H4), 132, 105, 91, 77, 42.
15. Meyers, A. I.; Slade, J. J. Org. Chem. 1980, 45, 2785.
10. (a) Servi, S. Synthesis 1990, 1, and references cited therein;
(b) North, M. Tetrahedron Lett. 1996, 37, 1699, and