H. Haning et al. / Bioorg. Med. Chem. Lett. 15 (2005) 1835–1840
1839
reduced activity. The position of the alkyl substituent on
the indole ring seems to be flexible since the 2-methyl and
the 3-methyl derivative demonstrate the same activity.
Indoles and indazoles show a slightly different SAR: for
indoles the classical isopropyl substituent showed the
highest potency, for the indazoles n-pentyl proved to
be the optimal substituent (25, EC50 = 8 nM). This find-
ing has some precedence since n-hexyl (equivalent to
n-pentyl substituents in the indazole series) as a substitu-
ent adjacent to the phenol had demonstrated the best
activity among linear alkyl chains in a series of 30substi-
tuted 3,5-diiodthyronines.16
Substituents in the inner ring also exert an influence
on the potency, more lipophilic groups result in higher
potency (vinyl < Me, CF3, Cl < Br). This had also been
demonstrated for KB141 and its dibromo analogue.10b,17
However, the relatively large difference (approx. 20-
fold) reported between dimethyl- and dichloro ana-
logues from an azauracil series12 was not reflected in
the indole series.
Our findings, when taken together with other recent re-
ports, show that structural modifications in the head
group, the tail group and on the inner ring lead to
THR b selective ligands even though the site of amino
acid difference interacts only with the head groups of
the agonists.
Replacement of the bridging oxygen atom with a meth-
ylene group (12) reduced the activity by a factor of 4.
This result is in agreement with findings for very early
T3 analogues.18 However, for GC1 and its ether ana-
logue and for T3 and its methylene analogue the oppo-
site effect was reported, that is, the methylene analogue
was more potent.6,9,19
References and notes
1. Pachuki, J.; Burmeister, L. A.; Larsen, P. R. Circ. Res.
1999, 85, 498.
Compounds 8, 15 and 20 demonstrate a 10-fold THRb
selectivity in a functional assay using isoform-selective
transient THR transfections.15 Under these assay condi-
tions, L-T3 (2) demonstrates a 2-fold selectivity for the
activation of THRa while GC1 displays a 10-fold selec-
tivity for THRb.
2. (a) Plateroti, M.; Angelin-Duclos, C.; Flamant, F.;
Samarut, J. Endocr. Updates 2004, 22, 13; (b) Trost, S.
U.; Swanson, E.; Gloss, B.; Wang-Iverson, D. B.; Zhang,
H.; Volodarsky, T.; Grover, G. J.; Baxter, J. D.; Chiellini,
G.; Scanlan, T. S.; Dillmann, W. H. Endocrinology 2000,
141, 3057; (c) Ye, L.; Li, Y.-L.; Mellstro¨m, K.; Mellin, C.;
Bladh, L.-G.; Koehler, K.; Garg, N.; Collazo, A. M. G.;
Litten, C.; Husman, B.; Persson, K.; Ljunggren, J.;
Grover, G.; Sleph, P. G.; George, R.; Malm, J. J. Med.
Chem. 2003, 46, 1580.
3. Wagner, R. L.; Apriletti, J. W.; McGrath, M. E.; West, B.
L.; Baxter, J. D.; Fletterick, R. J. Nature 1995, 378, 690.
4. Chiellini, G.; Apriletti, J. W.; Yoshihara, H. A.; Baxter, J.
D.; Ribeiro, R. C. J.; Scanlan, T. S. Chem. Biol. 1998, 5,
299.
5. (a) Yokoyama, N.; Walker, G. N.; Main, A. J.; Stanton, J.
L.; Morrissey, M. M.; Boehm, C.; Engle, A.; Neubert, A.
D.; Wasvary, J. M.; Stephan, Z. F.; Steele, R. E. J. Med.
Chem. 1995, 38, 695; (b) Stephan, Z. F.; Yurachek, E. C.;
Sharif, R.; Wasvary, J. M.; Leonards, K. S.; Hu, C.-W.;
Hintze, T. H.; Steele, R. E. Atherosclerosis 1996, 126, 53;
(c) Steele, R. E.; Wasvary, J. M.; Dardik, B. N.;
Schwartzkopf, C. D.; Sharif, R.; Leonards, K. S.; Hu,
C.-W.; Yurachek, E. C.; Stephan, Z. F. Int. Congr. Ser.
1995, 1066(Atherosclerosis X), 321.
In addition to amide head groups the oxyacetic acid
headgroup found in GC1 also was combined with the in-
dole motif. For this purpose, a copper mediated cou-
pling20 between a phenol and a boronic acid was used
as depicted in Scheme 4.
Compound 21 demonstrated somewhat reduced THR
agonistic activity (24 nM) compared to the oxamic acid
amide analogue (8) and 4-fold selectivity in activation of
THRb.
Scheme 5 shows our approach to indole thyromimetics
with all-carbon headgroups. Wittig elongation followed
by hydrogenation leads to propionic acid derivatives
with excellent potency (2.6 nM, 23). The cinnamic acid
precursor demonstrates comparable activity (3.2 nM,
22). Reduction, bromination and conversion to the cyano
headgroup, followed by hydrolysis gave the corre-
sponding acetic acid derivative and the most potent
indole thyromimetic in our series (EC50 = 0.5 nM, 24).
However, none of these carbon head group derivatives
showed THRb selectivity.
6. Underwood, A. H.; Emmett, J. C.; Ellis, D.; Flynn, S. B.;
Leeson, P. D.; Benson, G. M.; Novelli, R.; Pearce, N. J.;
Shah, V. P. Nature 1986, 324, 425.
7. Yoshihara, H. A. I.; Apriletti, J. W.; Baxter, J. D.;
Scanlan, T. S. J. Med. Chem. 2003, 46, 3152.
8. Ichikawa, K.; Miyamoto, T.; Kakizawa, T.; Suzuki, S.;
Kaneko, A.; Mori, J.; Hara, M.; Kumagai, M.; Takeda,
T.; Hashizume, K. J. Endocrinol. 2000, 165, 391.
9. Koerner, D.; Schwartz, H. L.; Surks, M. I.; Oppenheimer,
J. H. J. Biol. Chem. 1975, 250, 6417.
The syntheses of indazole containing thyromimetics and
the corresponding hydroxyindazoles are depicted in
Scheme 6. Protection of the phenol is followed by a
Grignard addition. Oxidation, simultaneous deprotec-
tion and reduction of the triple bond delivers the desired
amino acetophenon, which is diazotized. The resulting
diazoniumion is reduced to the hydrazine, which closes
in situ to the indazole ring system.21 In the case of the
indazoles acylation using oxalylethylchloride yields dou-
ble acylation products, that is, the indazole is also acyl-
ated. The indazole nitrogen is liberated using catalytic
NaOEt in EtOH.
10. (a) Hangeland, J. J.; Doweyko, A. M.; Dejneka, T.;
Friends, T. J.; Devasthale, P.; Mellstro¨m, K.; Sandberg, J.;
˚
Grynfarb, M.; Sack, J. S.; Einspahr, H.; Fa¨rnegardh, M.;
Husman, B.; Ljunggren, J.; Koehler, K.; Sheppard, C.;
Malm, J.; Ryono, D. E. Bioorg. Med. Chem. Lett. 2004,
14, 3549; (b) Grover, G.; Mellstro¨m, K.; Ye, L.; Malm, J.;
Li, Y.-L.; Bladh, L. G.; Sleph, P. G.; Smith, M. A.;
George, R.; Vennstro¨m, B.; Mookhtiar, K.; Horvath, R.;
Speelman, J.; Egan, D.; Baxter, J. D. Proc. Natl. Acad.
Sci. U.S.A. 2003, 100, 10067.