Journal of the American Chemical Society
Page 4 of 6
1
2
3
4
5
6
7
8
9
M.; Jiang, X. Chem. Asian J. 2014, 9, 3360. (j)Wang, T.; Jiao, N. Acc.
of all, 1a was deprotonated and coordinated to 11a to form Ag
complexes 11b. With support of L3 and N anion ligand, Ag(I)
center became very electron rich and was easily oxidized to
Ag(II) complexes 11c by PhI(OTFA)2.12 Subsequently, the
homolytic cleavage of N‐Ag bond took place to produce the
electron‐deficient N‐centered radical 11d and regenerated
Ag(I) species. Finally, 11d underwent the intramolecular at‐
tack to the phenyl ring to form the key intermediate ‐
complex 11e by dearomatization, facilitating the final aryl
migration to produce a relatively stable benzylic radical
11f.6a,b This benzylic radical 11f could be oxidized to the cor‐
responding cation 11g by presenting oxidants. TFAO‐, gener‐
ated at previous stage, came back to react with 11g to give the
desired products 2a. As suggested in Li's development with
Ag (III) as potential reactive species, 12b we also tried 1a in the
presence of AgNO3 and Selectfluor, and however, only 1a was
recovered. This result did not suggest the Ag(III) intermedi‐
ate in our system.
Chem. Res. 2014, 47, 1137.(k)Aubele, D. L.; Rech, J. C.; Floreancig,
P. E. Adv. Synth. Catal. 2004, 346, 359. (l)Tu, W.; Floreancig, P. E.
Org. Lett. 2007, 9, 2389. (m)Yamaguchi, J.; Yamaguchi, A. D.; Itami,
K. Angew. Chem., Int. Ed. 2012, 51, 8960. (n)Drahl, M. A.; Manpadi,
M.; Williams, L. J. Angew. Chem. Int. Ed. 2013, 52, 11222. (o)Xu, T.;
Dong, G. Angew. Chem. Int. Ed. 2014, 53, 10733.
(2) For C-C bond cleavage in strained compounds, selected examples,
see: (a) Murakami, M.; Takahashi, K.; Amii, H.; Ito, Y. J. Am. Chem.
Soc. 1997, 119, 9307. (b) Kim, S.; Takeuchi, D.; Osakada, K. J. Am.
Chem. Soc. 2002, 124, 762. (c) Bart, S. C.; Chirik, P. J. J. Am. Chem.
Soc. 2003, 125, 886. (d) Matsuda, T.; Shigeno, M.; Murakami, M. J.
Am. Chem. Soc. 2007, 129, 12086. (e) Souillart, L.; Parker, E.;
Cramer, N. Angew. Chem. Int. Ed. 2014, 53, 3001.
(3) For C-C bond cleavage in unstrained compounds, selected
examples, see: (a) Jiang, N.; Qu, Z.; Wang, J. Org. Lett. 2001, 3,
2989.(b) Zhang, C.; Feng, P.; Jiao, N. J. Am. Chem. Soc. 2013, 135,
15257. (c) Liu, Z.-Q.; Zhao, L.; Shang, X.; Cui, Z. Org. Lett. 2012, 14,
3218. (d) Huang, X.; Li, X.; Zou, M.; Song, S.; Tang, C.; Yuan, Y.;
Jiao, N. J. Am. Chem. Soc. 2014, 136, 14858.
(4) (a) Dust, J. M.; Arnold, D. R. J. Am. Chem. Soc. 1983, 105,
1221.(b) Popielarz, R.; Arnold, D. R. J. Am. Chem. Soc. 1990, 112,
3068.(c) Dinnocenzo, J. P.; Simpson, T. R.; Zuilhof, H.; Todd, W. P.;
Heinrich, T. J. Am. Chem. Soc. 1997, 119, 987.(d) Dinnocenzo, J. P.;
Zuilhof, H.; Lieberman, D. R.; Simpson, T. R.; McKechney, M. W. J.
Am. Chem. Soc. 1997, 119, 994.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
In summary, we have developed a novel silver‐catalyzed
long‐distanced aryl migration of γ,γ‐disubstituted triflic am‐
ides through C‐C bond cleavage, accompanying by the for‐
mation of new C‐O/C‐N bonds. More electron‐rich aryl
groups showed the better performance beyond electron‐
deficient aryl motifs during the migration. The migration
products were easily converted to γ‐hydroxy amines and
tetrahydroquinoline derivatives under mild conditions. Ac‐
cording to the control experiments, this transformation was
proposed through a silver‐promoted radical pathway. The
studies to clearly understand the mechanism and explore the
potential applications are underway.
(5) (a) Pettit, G. R.; Lippert, J. W.; Herald, D. L. J. Org. Chem. 2000,
65, 7438. (b) Qiu, Y.; Ma, D.; Kong, W.; Fu, C.; Ma, S. Org. Chem.
Front. 2014, 1, 62.
(6) For C-C bond cleavage in unstrained compounds via group
migration, see: (a) Studer, A.; Bossart, M. Tetrahedron. 2001, 57,
9649. (b) Chen, Z.-M.; Zhang, X.-M.; Tu, Y.-Q. Chem. Soc. Rev.
2015, 44, 5220. (c) Liu, X.; Xiong, F.; Huang, X.; Xu, L.; Li, P.; Wu,
X. Angew. Chem. Int. Ed. 2013, 52, 6962. (d) Zhao, J.; Fang, H.; Song,
R.; Zhou, J.; Han, J.; Pan, Y. Chem. Commun. 2015, 51, 599. (e) Chen,
Z.-M.; Bai, W.; Wang, S.-H.; Yang, B.-M.; Tu, Y.-Q.; Zhang, F.-M.
Angew. Chem. Int. Ed. 2013, 52, 9781. (f) Egami, H.; Shimizu, R.;
Usui, Y.; Sodeoka, M. Chem. Commun. 2013, 49, 7346. (g) Thaharn,
W.; Soorukram, D.; Kuhakarn, C.; Tuchinda, P.; Reutrakul, V.;
Pohmakotr, M. Angew. Chem. Int. Ed. 2014, 126, 2244. (h) Gao, P.;
Shen, Y.-W.; Fang, R.; Hao, X.-H.; Qiu, Z.-H.; Yang, F.; Yan, X.-B.;
Wang, Q.; Gong, X.-J.; Liu, X.-Y.; Liang, Y.-M. Angew. Chem. Int.
Ed. 2014, 53, 7629. (i) Palframan, M. J.; Tchabanenko, K.; Robertson,
J. Tetrahedron Lett. 2006, 47, 8423. (j) Amii, H.; Kondo, S; Uneyama,
K. Chem. Commun. 1998, 1845. (k) Aureliano Antunes, C. S.; Bietti,
M.; Ercolani, G.; Lanzalunga, O.; Salamone, M. J. Org. Chem. 2005,
70, 3884. (l) Bietti, M.; Ercolani, G.; Salamone, M. J. Org. Chem.
2007, 72, 4515.
(7) Kim, S.; Do, J. Y. J. Chem. Soc., Chem. Commun. 1995, 1607.
(8) Yang, M.; Su, B.; Wang, Y.; Chen, K.; Jiang, X.; Zhang, Y.-F.;
Zhang, X.-S.; Chen, G.; Cheng, Y.; Cao, Z.; Guo, Q.-Y.; Wang, L.;
Shi, Z.-J. Nat. Commun. 2014, 5, 4707.
(9) Togo, H.; Hoshina, Y.; Muraki, T.; Nakayama, H.; Yokoyama, M.
J. Org. Chem. 1998, 63, 5193.
(10) (a) Pape, A. R.; Kaliappan, K. P.; Kündig, E. P. Chem. Rev. 2000,
100, 2917. (b) Zhuo, C.-X.; Zheng, C.; You, S.-L. Acc. Chem. Res.
2014, 47, 2558. (c) Xu, R.-Q.; Gu, Q.; Wu, W.-T.; Zhao, Z.-A.; You,
S.-L. J. Am. Chem. Soc. 2014, 136, 15469. (d) Han, Z.; Zhang, L.; Li,
Z.; Fan, R. Angew. Chem. Int. Ed. 2014, 53, 6805.
(11) (a) He, N.; Huo, Y.; Liu, J.; Huang, Y.; Zhang, S.; Cai, Q. Org.
Lett. 2014, 17, 374. (b) Zhu, S.; Das, A.; Bui, L.; Zhou, H.; Curran, D.
P.; Rueping, M. J. Am. Chem. Soc. 2013, 135, 1823. (c) Gigant, N.;
Gillaizeau, I. Org. Lett. 2012, 14, 4622.
Supporting Information
Experimental procedures, analytical data for products,
NMR spectra of products, and X‐ray data for 2a are available
free of charge via the Internet at Http://pub.acs.org.
Corresponding Author
Notes
The authors declare no competing financial interest.
Acknowledgments
We thank Prof. Wen‐Xiong Zhang and Dr. Neng‐Dong
Wang for their help on the X‐ray crystallographic analysis
and Prof. Armido Studer for a useful discussion. Financial
support by MOST (2015CB856600) and NSFC (Nos. 21332001
and 21431008) is gratefully acknowledged. T.Z. was supported
in part by the Postdoctoral Fellowship of Peking‐Tsinghua
Center for Life Sciences and China Postdoctoral Science
Foundation Grant (2014 M550546).
References
(1) For reviews of C-C bond cleavage, see: (a) Dong, G., Ed. C-C
bond activation; Springer: Verlag Berlin Heidelberg, 2014. (b)
Crabtree, R. H. Chem. Rev. 1985, 85, 245. (c) Rybtchinski, B.;
Milstein, D. Angew. Chem. Int. Ed. 1999, 38, 870. (d) Baciocchi, E.;
Bietti, M.; Lanzalunga, O. Acc. Chem. Res. 2000, 33, 243. (e) Jun, C.-
H. Chem. Soc. Rev. 2004, 33, 610. (f) Seiser, T.; Saget, T.; Tran, D.
N.; Cramer, N. Angew. Chem. Int. Ed. 2011, 50, 7740. (g) Murakami,
M.; Matsuda, T. Chem. Commun. 2011, 47, 1100. (h) Allpress, C. J.;
Berreau, L. M. Coord. Chem. Rev. 2013, 257, 3005. (i) Liu, H.; Feng,
(12) (a) Harmata, M, Ed. Silver in organic chemistry. Wiley, Hoboken,
2010;(b) Li, Z.; Song, L.; Li, C. J. Am. Chem. Soc. 2013, 135, 4640.(c)
Zhu, L.; Chen, H.; Wang, Z.; Li, C. Org. Chem. Front. 2014, 1, 1299.
(d) Shi, G.; Shao, C.; Pan, S.; Yu, J.; Zhang, Y. Org. Lett. 2015, 17,
38.
ACS Paragon Plus Environment