Chemistry Letters Vol.35, No.1 (2006)
59
thesis of a series of BFs and their detailed inclusion properties,
including determination of crystal structure, are now in progress.
HO
HO
R
I
c
b
Ph
Ph
We thank the Materials Analysis Center of ISIR-Sanken,
Osaka University for assisting us with elemental analysis.
3 (R = TMS)
8 (R = H)
9
a
References and Notes
1
HO
For examples, see: a) S. J. Gould, S.-T. Hong, J. R. Carney, J.
Antibiot. 1998, 51, 50. b) H. Koyama, T. Kamikawa, J. Chem.
Soc., Perkin Trans. 1 1998, 203. c) S.-I. Mohri, M. Stefinovic,
V. Snieckus, J. Org. Chem. 1997, 62, 7072. d) S. J. Gould, C. R.
Melville, M. C. Cone, J. Chen, J. R. Carney, J. Org. Chem.
1997, 62, 320. e) T. Aoyama, W. Zhao, F. Kojima, Y. Muraoka,
H. Naganawa, T. Takeuchi, T. Aoyagi, J. Antibiot. 1993, 46, 1471.
S. J. Gould, C. R. Melville, Bioorg. Med. Chem. Lett. 1995, 5, 51.
a) H. J. J. Loozen, M. Wagener, G. H. Veeneman, E. W. De Zwart,
PCT Int. Appl. WO 2003070675, 2003. b) G. H. Veeneman,
H. J. J. Loozen, J. Mestres, E. W. De Zwart, PCT Int. Appl. WO
2002016316, 2002.
a) T. Kawano, H. Inai, K. Miyawaki, I. Ueda, Tetrahedron Lett.
2005, 46, 1233. b) K. Miyawaki, T. Kawano, I. Ueda, Tetrahedron
Lett. 2000, 41, 1447. c) T. Kawano, C. Ikemoto, I. Ueda, Tetra-
hedron Lett. 1998, 39, 6491. d) K. Miyawaki, R. Suzuki, T.
Kawano, I. Ueda, Tetrahedron Lett. 1997, 38, 3943.
Ph
OH
e
d
Ph
OH
Ph
Ph
OH
Ph
10
11
2
3
HO
Ph
O
g
f
(5S*, 5'S*, 6R*)-1
OH
Ph
OH
Ph
4
Ph
Ph
( )-12
( )-13
Scheme 2. Step-by-step cycloaromatization of non-conjugated
tetrayne. Reagents and conditions: (a) K2CO3, MeOH, 0 ꢂC.
(b) (1) DHP, PPTS, CH2Cl2, rt; (2) MeLi, I2, THF, ꢁ23 ꢂC;
(3) PPTS, MeOH, 55 ꢂC. (c) 4, CuI, O2, pyrrolidine, ꢁ23 ꢂC.
(d) Acetone, ꢁ45 ꢂC. (e) IBX, DMSO, rt. (f) PhMgBr, THF,
0 ꢂC. (g) Benzene, 80 ꢂC.
5
6
M. Schmittel, M. Strittmatter, W. A. Schenk, M. Hagel, Z.
Naturforsch. 1998, 53b, 1015.
´
a) D. Rodrıguez, L. Castedo, D. Domınguez, C. Saa, Tetrahedron
Lett. 1999, 40, 7701. b) G. Rodrıguez, D. Rodrıguez, M. Lopez,
´
´
´
´
´
´
´
L. Castedo, D. Domınguez, C. Saa, Synlett 1998, 1282.
For examples, see: a) F. Toda, K. Akagi, Tetrahedron Lett. 1968,
9, 3695. b) K. Kobayashi, Bull. Chem. Soc. Jpn. 2003, 76, 247, and
references cited therein.
7
would be caused by chelation-control in the Grignard reaction of
12. Finally, cycloaromatization of 13 in benzene led to the for-
mation of 1 in 67% yield. All compounds obtained in this study
were characterized by spectroscopy (NMR, IR, and FABMS)
and elemental analysis.10
Among the many species of wheel-and-axle-type host com-
pounds, molecules containing the hydroxyl group, especially the
‘‘diarylmethanol unit,’’ are known to be effective for the forma-
tion of crystalline inclusion compounds (clathrates).11 The inclu-
sion behavior of compound 1 bearing a double diarylmethanol
unit was estimated using a broad variety of guest compounds
(Table 1). The results showed that compound 1 mainly favored
clathrates in the 1:2 host/guest stoichiometric ratio, though a
few examples of the formation of clathrates in the 1:1 ratio or
2:1 ratio were observed.12
8
9
P. Sagar, R. Frohlich, E.-U. Wurthwein, Angew. Chem., Int. Ed.
¨
¨
2004, 43, 5694.
A. S. Hay, J. Org. Chem. 1962, 27, 3320.
10 Selected physical data are as follows. Compound 1: Colorless
prisms, mp 302.5–303.0 ꢂC (from benzene–hexane).1H NMR
(400 MHz, CDCl3) ꢀ 4.86 (s, 2H), 6.10 (d, 2H, J ¼ 8:3 Hz),
6.44–6.52 (m, 10H), 6.59–6.62 (m, 2H), 7.04 (d, 2H, J ¼ 7:6
Hz), 7.11–7.14 (m, 2H), 7.22–7.26 (m, 2H), 7.46 (d, 2H, J ¼
7:6 Hz), 7.71 (d, 2H, J ¼ 8:3 Hz), 7.97 (d, 2H, J ¼ 7:6 Hz), 8.24
(s, 2H) ppm. IR (KBr) ꢁ 3270, 3045, 3020 cmꢁ1. FABMS
(NBA) m=z 615 ½M þ Hꢃþ. Anal. Calcd for C46H30O2: C, 89.88;
H, 4.92%. Found: C, 89.64; H, 5.11%. Compound 6: Colorless
powder, mp 153.5–154.5 ꢂC. 1H NMR (400 MHz, CDCl3) ꢀ 3.03
(s, 1H), 3.51 (s, 1H), 7.11–7.29 (m, 15H), 7.33–7.51 (m, 7H),
7.64 (d, 1H, J ¼ 7:3 Hz), 7.81 (d, 1H, J ¼ 7:6 Hz), 7.89–7.94
(m, 2H), 8.14 (s, 1H), 8.29 (d, 1H, J ¼ 8:3 Hz) ppm. IR (KBr) ꢁ
3545, 3470, 3060, 3035, 2235, 2195 cmꢁ1. FABMS (NBA) m=z
In conclusion, we have demonstrated that step-by-step
cycloaromatization of non-conjugated tetraynes proceeded
smoothly to produce 6,60-bi(5-phenylbenzo[b]fluoren-5-ol)
derivative with inclusion properties. Further studies for the syn-
615 ½M þ Hꢃþ. Anal. Calcd for C46H30O2 1/2H2O: C, 88.58; H,
.
5.01%. Found: C, 88.77; H, 4.78%.
11 a) E. Waber, T. Hens, Q. Li, T. C. W. Mak, Eur. J. Org. Chem.
1999, 1115. b) Inclusion Compounds, ed. by J. L. Atwood, J. E.
D. Davies, D. D. MacNicol, Academic Press, London, 1984.
12 A typical method for the formation of clathrates: (Method A)
A mixture of 1 and an excess amount of guest compound in ether
was stirred at room temperature for 24 h. After addition of
petroleum ether, the precipitates were collected and dried in
vacuo. (Method B) Compound 1 was dissolved under heating in
a minimum amount of guest compound. The resulting solution
was allowed to stand overnight at room temperature, the precipi-
tates which formed were collected and dried in vacuo. Selected
Table 1. Crystalline inclusion compounds of 1a
CH2Cl2 DMSO DMF Et3N
Pyridine
1:2
PhCHO
1:2
1:1
1:2
1:2
1:1
Acetone
1:2
Butan-2-one
NTd
CPb Acetophenone
NT
1:2e
BPc
2:1e
aHost/guest stoichiometric ratios, which were determined by
b
c
d
1H NMR. Cyclopentanone. Benzophenone. Not detected.
eBinding constants of acetophenone and BP were 3:64 ꢄ
103 and 4:29 ꢄ 103 Mꢁ1, respectively.
.
physical data are as follows. Clathrate 1 2DMSO: Colorless
prisms. mp 300.0–301.0 ꢂC (from DMSO). Anal. Calcd for
C50H42O4S2: C, 77.89; H, 5.49%. Found: C, 77.88; H, 5.41%.