However, in most of the previous publications, the
macrolides of plecomacrolides were constructed by Yamagu-
chi’s method, which limits the flexibility to make structurally
diverse plecomacrolide analogues.11,14
Recently, because ruthenium carbene complexes not only
exhibit high synthetic efficiency and activity, but also tolerate
a range of functional groups,15 application of those complexes
for assembly of complex macrolides has opened up new
avenues for large-ring construction.16
In view of the existing conjugated double bonds in
plecomacrolides, we envisioned that the top conjugated
double bonds could be installed by diene-ene ring-closing
metathesis (RCM)17 with simultaneous formation of the
macrocycles. Interestingly, no such report appeared in the
literature, which encouraged us to initiate our study. In this
paper, we present our progress toward the synthesis of a
structural macrolide via RCM. Our goal has always been
the development of a versatile approach for diversity-oriented
syntheses of the plecomacrolide analogues.
Figure 1. Naturally occurring plecomacrolides.
Our generic approach to the syntheses of plecomacrolides
is shown in Figure 2. Retrosynthetically, macrolide A was
expected to be formed via intramolecular RCM reaction from
B, which could be made from C and D by dehydration.
Intermediate C would be derived from E by two sequential
double bond formations via Wittig and HWE reactions. This
illustrated strategy demonstrated the potential to synthesize
structurally diverse plecomacrolides by systematically cleav-
ing three major regions (highlighted as purple, green, and
blue in A).
Our study began with testing the feasibility of constructing
16-membered marcolide 10 via RCM (Scheme 1) from
substrate 9 as illustrated in Scheme 1.
To this end, we designed an approach for synthesis of 9.
Accordingly, ester 4 was reduced to its alcohol by DIBAL-
H, which was then oxidized to aldehyde 5 by Dess-Martin
Periodinane (DMP). This aldehyde was reacted with carbo-
methoxyethylidene triphenylphosphorane followed by de-
silyilation and oxidation (DMP) to give aldehyde 6.
To make substrate 9, aldehyde 6 was coupled with the
ylide derived from phosphonium salt Ph3PCH3Br (KHMDS,
(12) (a) Evans, D.; Calter, M. A. Tetrahedron Lett. 1993, 34, 6871. (b)
Toshima, K.; Jyojima, T.; Yamaguchi, H.; Noguchi, Y.; Yoshida, T.;
Murase, H.; Nakata, M.; Matsumura, S. J. Org. Chem. 1997, 62, 3271. (c)
Paterson, I.; Doughty, V. A.; McLeod, M. D.; Trieselmann, T. Angew.
Chem., Int. Ed. 2000, 39, 1308. (d) Toshima, K.; Jyojima, T.; Miyamoto,
N.; Katohno, M.; Nakata, M.; Matsumura, S. J. Org. Chem. 2001, 66, 1708.
(e) Scheidt, K. A.; Bannister, T. D.; Tasaka, A.; Wendt, M. D.; Savall, B.
M.; Fegley, G. J.; Roush, W. R. J. Am. Chem. Soc. 2002, 124, 6981. (f)
Hanessian, J. A.; Ma. J.; Wang, W. J. Am. Chem. Soc. 2002, 123, 10200.
(g) Marshall, J. A.; Adams, N. D. J. Org. Chem. 2002, 67, 733. (h) Makino,
K.; Nakajima, N.; Hashimoto, S.; Yonemitsu, O. Tetrahedron Lett. 1996,
37, 9077.
(13) (a) Keeling D. J.; Herslo¨f, M.; Mattsson, J. P.; Ryberg, B. Acta
Physiol. Scand. 1998, 163, 195. (b) Gaglisrdi, S.; Rees, M.; Farina, C. Curr.
Med. Chem. 1999, 6, 1197. (c) Yoshimoto, Y.; Jyojima, T.; Arita, T.; Ueda,
M.; Imoto, M.; Matsumura, S.; Toshima, K. Bioorg. Med. Chem. Lett. 2002,
12, 3525.
(14) (a) Werner, G.; Hagenmaier, H.; Albert, K.; Kohlshorn, H.
Tetrahedron Lett. 1983, 24, 5193. (b) Baker, G. H.; Brown, P. J.; Dorgan,
R. J. J.; Everett, J. R.; Ley, S. V.; Slawin, A. M. Z.; Williams, D. J.
Tetrahedron Lett. 1987, 28, 5565. (c) Deeg, M.; Hagenmaier, H.; Kretschmer,
A. J. Antibiot. 1987, 40, 320. (d) Gagliardi, S.; Gatti, P. A.; Belfiore, P.;
Zocchetti, A.; Clarke, G. D.; Farania, C. J. Med. Chem. 1998, 41, 1883.
(15) For recent reviews of olefin metathesis see: (a) Trnka, T. M.;
Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18. (b) Grubbs, R. H.; Chang, S.
Tetrahedron 1998, 54, 4413. (c) Furstner, A. Angew. Chem., Int. Ed. 2000,
39, 3012. (d) Schuster, M.; Blechert, S. Angew. Chem., Int. Ed. Engl. 1997,
36, 2037. (e) Connon, S. J.; Blechert, S. Angew. Chem., Int. Ed. 2003, 42,
1900. (f) (d) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int.
Ed. 2005, 44, 4490.
(16) (a) Cabrejas, L. M. M.; Rohrbach, S.; Wagner, D.; Kallen, J.; Zenke,
G.; Wagner, J. Angew Chem., Int. Ed. 1999, 38, 2443. (b) Dvorak, C. A.;
Schmitz, W. D.; Poon, D. J.; Pryde D. C.; Lawson, J. P.; Amos, R. A.;
Meyers, A. I. Angew. Chem., Int. Ed. 2000, 39, 1664. (c) Garbaccio, R.
M.; Stachel, S. J.; Baeschlin, D. K.; Danishefsky, S. J. J. Am. Chem. Soc.
2001, 123, 10903. (d) Lacombe, F.; Radkowski, K.; Seidel, G.; Fu¨rstner,
A. Tetrahedron 2004, 60, 7315.
(17) (a) Garbaccio, R. M.; Stachel, S. J.; Baeschlin, D. K.; Danishefsky,
S. J. J. Am. Chem. Soc. 2001, 123, 10903. (b) Dvorak, C. A.; Schmitz, W.
D.; Poon, D. J.; Pryde, D. C.; Lawson, J. P.; Amos, R. A.; Meyers, A. I.
Angew. Chem., Int. Ed. 2000, 39, 1664. (c) Wagner, J.; Cabrejas, L. M.
M.; Grossmith, C. E.; Papageorgiou, C.; Senia, F.; Wagner, D.; France, J.;
Nolan, S. P. J. Org. Chem. 2000, 65, 9255. (d) Biswas, K.; Lin, H.;
Njardarson, J. T.; Chappell, M. D.; Chou, T. C.; Guan, Y.; Tong, W. P.;
He, L.; Horwitz, S. B.; Danishefsky, S. J. J. Am. Chem. Soc. 2002, 124,
9825. (e) Yamamoto, K.; Biswas, K.; Caul, C.; Danishefsky, S. J.
Tetrahedron Lett. 2003, 44, 3297. (f) Evano, G.; Schaus, J. V.; Panek, J. S.
Org. Lett. 2005, 7, 525.
Figure 2. Retrosynthetic analysis.
1194
Org. Lett., Vol. 8, No. 6, 2006