both overall yields and enantioselectivities as compared to
their late lanthanide counterparts.10,11 Upon further examina-
tion, we found that both Ce(III)‚6 triflate and Ce(IV)‚6 triflate
(1) displayed excellent enantiofacial selectivities and yields
for the illustrated reaction with crotyl 2-acyl imidazole. The
Ce(IV)‚6 triflate complex (1)12 was found to be a more gener-
al catalyst, as Ce(III)‚6 triflate performed sluggishly with
more challenging substrates such as cinnamyl 2-acyl imi-
dazole.
We next turned our attention to the effects of solvent, lig-
and substitution, and temperature on the cycloaddition (Table
1). It was found that the cis- and trans-bisphenyl-pybox
Table 1. Optimization of the Catalyst and Reaction Parameters
of the Nitrone Cycloadditiona,b
temp
(°C)
t
(h)
entry ligand
solvent
mol %
% yield % eec
Figure 1. Lanthanide survey for the nitrone cycloaddition reaction
1
2
2
3
4
5
6
7
8
6
6
6
6
6
6
6
6
6
6
6
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
toluene
CF3C6H5
EtOAc
Et2O
10
10
10
10
10
10
10
10
10
10
10
10
10
10
5
0
0
19
26
42
18
28
68
82
84
3
86
87
96
68
91
72
74
97
98
90
85
96
99
78
78
99
99
96
86
87
98
91
94
64
80
99
97
97
73
with crotyl 2-acyl imidazole.
3
0
100
100
40
4
0
illustrated in eq 2 (Figure 1). Although the illustrated Sc-
(III)-pybox complex was an efficient catalyst for the Frie-
del-Crafts reactions (eq 1),3 it was found to display poor
enantiofacial control for the corresponding nitrone cycload-
ditions. Other proven Lewis acid catalysts from our group,
such as the Cu(II)-pybox, Cu(II)-box,7 and Ni(II)-box8
complexes, also performed poorly for the illustrated trans-
formation.9
5
0
6
0
40
24
7
0
8
0
110
17
9
0
10
11
12
13
14
15
16
17
18
0
11
0
110
17
THF
0
CH3CN
i-PrOH
EtOAc
EtOAc
EtOAc
EtOAc
0
110
110
17
0
0
2
0
72
5
5
+20
+60
11
From the lanthanide screen, it was concluded that the early
lanthanide-pybox complexes were superior with respect to
8
a All reactions performed at 0.1 M in substrate with 25 mg 4 Å MS/mL
of solvent. b For all reactions, the endo:exo ratio was >99:1. c Enantiomeric
excess determined by chiral HPLC.
(2) For Lewis acid catalyst examples, see: (a) Kano, T.; Hashimoto, T.;
Maruoka, K. J. Am. Chem. Soc. 2005, 127, 11926-11927. (b) Suga, H.;
Nakajima, T.; Itho, K.; Kakehi, A. Org. Lett. 2005, 7, 1431-1434. (c)
Kanemasa, S.; Oderaotoshi, Y.; Tanaka, J.; Wada, E. J. Am. Chem. Soc.
1998, 120, 12355-12356. (d) Palomo, C.; Oiarbide, M.; Arceo, E.; Garc´ıa,
J. M.; Lo´pez, R.; Gonza´lez, A.; Linden, A. Angew. Chem., Int. Ed. 2005,
44, 6187-6190. (e) Sibi, M. P.; Ma, Z.; Jasperse, C. P. J. Am. Chem. Soc.
2004, 126, 718-719. (f) Kobayashi, S.; Kawamura, M. J. Am. Chem. Soc.
1998, 120, 5840-5841. For organocatalyst examples, see: (g) Jen, W. S.;
Wiener, J. J. M.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 9874-
9875. (h) Karlsson, S.; Hogberg, H.-E. Eur. J. Org. Chem. 2003, 2782-
2791.
(3) For indole Friedel-Crafts reactions with R,â-unsaturated 2-acyl
imidazoles, see: (a) Evans, D. A.; Fandrick, K. R.; Song, H.-J. J. Am. Chem.
Soc. 2005, 127, 8942-8943. For pyrrole Friedel-Crafts reactions, see: (b)
Evans, D. A.; Fandrick, K. R. Org. Lett. 2006, 8, 2249-2252.
(4) For the transformation of 2-acyl-benzimidazoles to esters, amides,
â-diketones, and â-ketoesters, see: (a) Miyashita, A.; Suzuki, Y.; Nagasaki,
I.; Ishiguro, C.; Iwamoto, K.-I.; Higashino, T. Chem. Pharm. Bull. 1997,
45, 5, 1254-1258. For the transformation of 2-acyl-imidazoles to ketones,
â-diketones, â-ketoesters, and aldehydes, see: (b) Ohta, S.; Hayakawa, S.;
Nishimura, K.; Okamoto, M. Chem. Pharm. Bull. 1987, 35, 1058-1069.
(5) For a good review of metal-pybox complexes as chiral catalysts,
see: Desimoni, G.; Faita, G.; Quadrelli, P. Chem. ReV. 2003, 103, 3119-
3154.
(6) For the reviews of asymmetric catalysis by lanthanide complexes,
see: (a) Steel, P. G. J. Chem. Soc., Perkin Trans. 1 2001, 2727-2751. (b)
Mikami, K.; Terada, M.; Matsuzawa, H. Angew. Chem., Int. Ed. 2002, 41,
3554-3571. (c) Shibasaki, M.; Yoshikawa, N. Chem. ReV. 2002, 102,
2187-2209. (d) Inanaga, J.; Furuno, H.; Hayano, T. Chem. ReV. 2002, 102,
2211-2225. (e) Kobayashi, S.; Sugiura, M.; Kitagawa, H.; Lam, W. W.-
L. Chem. ReV. 2002, 102, 2227-2302.
ligands 6 and 7 afforded the best enantioselectivities and
yields of the ligands explored (Table 1, entries 1-7). Ethyl
acetate proved to be the solvent of choice (entries 8-14),
and the reaction could be performed at ambient temperatures
while maintaining excellent enantiofacial selectivities (entries
17 and 18). Trace amounts of moisture were found to be
(7) Johnson, J. S.; Evans, D. A. Acc. Chem. Res. 2000, 33, 325-335.
(8) Evans, D. A.; Downey, C. W.; Hubbs, J. L. J. Am. Chem. Soc. 2003,
125, 8706-8707.
(9) For Sc(III) and Ni(II), excellent endoselectivity (>99:1) with poor
enantioselectivity (max 6% ee) was observed. For Cu(II), a high dr (>99:
1) with low ee (23%) and a low dr (3.5:1) with moderate ee (46% and
58%) were observed.
(10) For the ionic radii of lanthanide cations, see: Shannon, R. D. Acta
Crystallogr. 1976, A32, 751-767.
3352
Org. Lett., Vol. 8, No. 15, 2006