Journal of the American Chemical Society
Article
(16) Pu, X. T.; Qi, X. B.; Ready, J. M. J. Am. Chem. Soc. 2009, 131,
10364.
(17) Imbriglio, J. E.; Vasbinder, M. M.; Miller, S. J. Org. Lett. 2003, 5,
CONCLUSION
■
In conclusion, we have developed a highly diastereo- and
enantioselective addition of allenic esters to N-acylimines. Our
results include the study of allenoates containing unsymmetrical
carboxylic acid functional groups (ester versus amide) at the
allene termini in these additions for the first time, revealing
mechanistic consequences. These chiral tetrasubstituted allenes
could serve as chiral building blocks for applications in
synthetic chemistry. In addition, the differential substitution
pattern in these products allows for orthogonal functionaliza-
tion. Our data supports nucleophilic catalysis as the mode of
reaction, and while our mechanistic data is still preliminary we
have proposed a hypothetical mechanistic model that is
consistent with the observed reactivity and selectivity.
3741.
(18) Aroyan, C. E.; Vasbinder, M. M.; Miller, S. J. Org. Lett. 2005, 7,
3849.
(19) Vasbinder, M. M.; Imbriglio, J. E.; Miller, S. J. Tetrahedron 2006,
62, 11450.
(20) Evans, C. A.; Miller, S. J. J. Am. Chem. Soc. 2003, 125, 12394.
(21) Evans, C. A.; Cowen, B. J.; Miller, S. J. Tetrahedron 2005, 61,
6309.
(22) Hashimoto, T.; Sakata, K.; Tamakuni, F.; Dutton, M. J.;
Maruoka, K. Nat. Chem. 2013, 5, 240.
(23) Cowen, B. J.; Saunders, L. B.; Miller, S. J. J. Am. Chem. Soc.
2009, 131, 6105.
(24) Saunders, L. B. Doctoral Thesis, Yale University, 2012.
(25) Jakobsche, C. E.; Peris, G.; Miller, S. J. Angew. Chem., Int. Ed.
2008, 47, 6707.
(26) Vasbinder, M. M.; Jarvo, E. R.; Miller, S. J. Angew. Chem., Int. Ed.
2001, 40, 2824.
(27) Price, K. E.; Broadwater, S. J.; Walker, B. J.; McQuade, D. T. J.
Org. Chem. 2005, 70, 3980.
(28) Price, K. E.; Broadwater, S. J.; Jung, H. M.; McQuade, D. T. Org.
Lett. 2005, 7, 147.
ASSOCIATED CONTENT
■
S
* Supporting Information
Full experimental details, characterization, and X-ray crystallo-
graphic data. This material is available free of charge via the
(29) Robiette, R.; Aggarwal, V. K.; Harvey, J. N. J. Am. Chem. Soc.
2007, 129, 15513.
(30) Aggarwal, V. K.; Fulford, S. Y.; Lloyd-Jones, G. C. Angew. Chem.,
Int. Ed. 2005, 44, 1706.
(31) Wenzel, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124,
12964.
(32) Raheem, I. T.; Jacobsen, E. N. Adv. Synth. Catal. 2005, 347,
1701.
(33) Buskens, P.; Klankermayer, J.; Leitner, W. J. Am. Chem. Soc.
2005, 127, 16762.
(34) Saunders, L. B.; Cowen, B. J.; Miller, S. J. Org. Lett. 2010, 12,
4800.
(35) Hall, H. K.; Bates, R. B. Tetrahedron Lett. 2012, 53, 1830.
(36) Brotzel, F.; Kempf, B.; Singer, T.; Zipse, H.; Mayr, H. Chem.
Eur. J. 2007, 13, 336.
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful to the National Science Foundation (CHE-
0848224) for financial support and to Louise Guard for X-ray
crystallography. Partial support from the Israel−US Binational
Science Foundation is also acknowledged. All experiments
involving allenic substrate 1a were conducted by Megan
Brennan and Lindsey B. Saunders.
(37) Ammer, J.; Baidya, M.; Kobayashi, S.; Mayr, H. J. Phys. Org.
Chem. 2010, 23, 1029.
(38) Odiaka, T. I.; Kane-Maguire, L. A. P. J. Chem. Soc., Dalton Trans.
1981, 1162.
REFERENCES
■
(1) Hoffmann-Roder, A.; Krause, N. Angew. Chem., Int. Ed. 2004, 43,
1196.
(2) Krause, N.; Hoffmann-Roder, A. In Modern Allene Chemistry;
Krause, N., Hoffmann-Roder, A., Eds.; Wiley-VCH: Weinheim, 2004;
(39) Pearson, R. G.; Sobel, H. R.; Songstad, J. J. Am. Chem. Soc. 1968,
90, 319.
(40) Bruckner, R. Organic Mechanisms Reactions, Stereochemistry and
Synthesis; Springer Verlag: Berlin, 2010.
(41) Wei, Y.; Sastry, G. N.; Zipse, H. J. Am. Chem. Soc. 2008, 130,
3473.
(42) Denmark, S. E.; Beutner, G. L. Angew. Chem. Int. Ed 2008, 47,
1560.
(43) Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic
Chemistry; University Science: Sausalito, CA, 2006.
(44) Haque, T. S.; Little, J. C.; Gellman, S. H. J. Am. Chem. Soc. 1996,
118, 6975.
̈
̈
p 997.
(3) Yu, S. C.; Ma, S. M. Angew. Chem., Int. Ed. 2012, 51, 3074.
(4) Brummond, K. M.; Chen, H. In Modern Allene Chemistry; Krause,
N., Hoffmann-Roder, A., Eds.; Wiley-VCH: Weinheim, 2004; p 1041.
̈
(5) Tejedor, D.; Mendez-Abt, G.; Cotos, L.; Garcia-Tellado, F. Chem.
Soc. Rev. 2013, 42, 458.
(6) Brasholz, M.; Reissig, H. U.; Zimmer, R. Acc. Chem. Res. 2009, 42,
45.
(7) Aubert, C.; Fensterbank, L.; Garcia, P.; Malacria, M.; Simonneau,
A. Chem. Rev. 2011, 111, 1954.
(45) Rose, G. D.; Gierasch, L. M.; Smith, J. A. Adv. Protein Chem.
1985, 37, 1.
(46) Knowles, R. R.; Jacobsen, E. N. Proc. Natl. Acad. Sci. U.S.A.
2010, 107, 20678.
(8) Bates, R. W.; Satcharoen, V. Chem. Soc. Rev. 2002, 31, 12.
(9) Cowen, B. J.; Miller, S. J. Chem. Soc. Rev. 2009, 38, 3102.
(10) Na, R. S.; Jing, C. F.; Xu, Q. H.; Jiang, H.; Wu, X.; Shi, J. Y.;
Zhong, J. C.; Wang, M.; Benitez, D.; Tkatchouk, E.; Goddard, W. A.;
Guo, H. C.; Kwon, O. Y. J. Am. Chem. Soc. 2011, 133, 13337.
(11) Ohno, H.; Nagaoka, Y.; Tomioka, K. In Modern Allene
Chemistry; Krause, N., Hoffmann-Roder, A., Eds.; Wiley-VCH:
̈
Weinheim, 2004; p 141.
(12) Ogasawara, M. Tetrahedron: Asymmetry 2009, 20, 259.
(13) Li, Z. J.; Boyarskikh, V.; Hansen, J. H.; Autschbach, J.; Musaev,
D. G.; Davies, H. M. L. J. Am. Chem. Soc. 2012, 134, 15497.
(14) Hayashi, T.; Tokunaga, N.; Inoue, K. Org. Lett. 2004, 6, 305.
(15) Hammel, M.; Deska, J. Synthesis 2012, 44, 3789.
3292
dx.doi.org/10.1021/ja412996f | J. Am. Chem. Soc. 2014, 136, 3285−3292