1882
C. Shu et al.
LETTER
(7) For selected examples, see: (a) Chi, Y. G.; English, E. P.;
Pomerantz, W. C.; Horne, W. S.; Joyce, L. A.; Alexander, L.
R.; Fleming, W. S.; Hopkins, E. A.; Gellman, S. H. J. Am.
Chem. Soc. 2007, 129, 6050. (b) Chi, Y. G. Gellman S. H.
J. Am. Chem. Soc. 2006, 128, 6804. (c) Sibi, M. P.;
Tatamidani, H.; Patil, K. Org. Lett. 2005, 7, 2571.
Yuan, W. C.; Zhang, X. M. Adv. Synth. Catal. 2013, 355,
1931. (r) Chen, X.; Hu, X. Y.; Shu, C.; Zhang, Y. H.; Zheng,
Y. S.; Jiang, Y.; Yuan, W. C.; Liu, B.; Zhang, X. M. Org.
Biomol. Chem. 2013, 11, 3089. (s) Jiang, Y.; Chen, X.;
Zheng, Y. S.; Xue, Z. Y.; Shu, C.; Yuan, W. C.; Zhang, X.
M. Angew. Chem. Int. Ed. 2011, 50, 7304. (t) Zheng, H. J.;
Chen, W. B.; Wu, Z. J.; Deng, J. G.; Lin, W. Q.; Yuan, W.
C.; Zhang, X. M. Chem. Eur. J. 2008, 14, 9864.
(d) Beddow, J. E.; Davies, S. G.; Ling, K. B.; Roberts, P. M.;
Russell, A. J.; Smith, A. D.; Thomson, J. E. Org. Biomol.
Chem. 2007, 5, 2812.
(10) For reviews on DKR, see: (a) Zhang, B. L.; Qin, W.; Duan,
Y. C.; Yu, B.; Zhang, E.; Liu, H. M. Chin. J. Org. Chem.
2012, 32, 1359. (b) Pellissier, H. Tetrahedron 2011, 67,
3769. (c) Pellissier, H. Adv. Synth. Catal. 2011, 353, 659.
(d) Zhang, Z. H.; Liu, Q. B. Chin. J. Org. Chem. 2005, 25,
780.
(11) For recent selected examples, see: (a) Shen, X.; Miao, W. J.;
Ni, C. F.; Hu, J. B. Angew. Chem. Int. Ed. 2014, 53, 775.
(b) Nikitin, K.; Rajendran, K. V.; Müller-Bunz, H.;
Gilheany, D. G. Angew. Chem. Int. Ed. 2014, 53, 1906.
(c) Dornan, P. K.; Kou, K. G. M.; Houk, K. N.; Dong, V. M.
J. Am. Chem. Soc. 2014, 136, 291. (d) Yang, W.; Yang, Y.;
Du, D. M. Org. Lett. 2013, 15, 1190. (e) Metrano, A. J.;
Miller, S. J. J. Org. Chem. 2014, 79, 1542.
(8) For reviews on Lewis base catalysis and Lewis base catalytic
asymmetric hydrosilylations of C=N double bonds, see:
(a) Rendler, S.; Oestreich, M. Synthesis 2005, 1727.
(b) Orito, Y.; Nakajima, M. Synthesis 2006, 1391.
(c) Denmark, S. E.; Beutner, G. L. Angew. Chem. Int. Ed.
2008, 47, 1560; Angew. Chem. 2008, 120, 1584.
(d) Kočovský, P.; Malkov, A. V. Chiral Lewis Bases as
Catalysts, In Enantioselective Organocatalysis; Dalko, P. I.,
Ed.; Wiley-VCH: Weinheim, 2007, 255. (e) Kagan, H. B.
Organocatalytic Enantioselective Reduction of Olefins,
Ketones and Imines, In Enantioselective Organocatalysis;
Dalko, P. I., Ed.; Wiley-VCH: Weinheim, 2007, 391.
(f) Jones, S.; Warner, C. J. A. Org. Biomol. Chem. 2012, 10,
2189. (g) Guizzetti, S.; Benaglia, M. Eur. J. Org. Chem.
2010, 5529. (h) Weickgenannt, A.; Oestreich, M.
(12) Huang, L. J.; Hsieh, M. C.; Teng, C. M.; Lee, K. H.; Kuo, S.
C. Bioorg. Med. Chem. 1998, 6, 1657.
ChemCatChem 2011, 3, 1527.
(13) General Experimental Procedure for the Enantioselective
Hydrosilylation of α-Substituted β-Enamino Esters
A solution of trichlorosilane (41 μL, 0.3 mmol, 2.0 equiv) in
160 μL of CH2Cl2 was added to a stirred solution of the
corresponding α-substituted β-enamino ester (0.20 mmol)
and the catalyst 3i (0.020 mmol) in CH2Cl2 (2.0 mL) at –10
°C. The mixture was stirred at the same temperature until the
reaction reached completion. Then the reaction was
quenched with a sat. aq solution of NaHCO3 and was
extracted with CH2Cl2. The combined organic layer was
washed with brine, dried over anhydrous Na2SO4, and the
solvents were evaporated. Purification by column
(9) For representative examples, see: (a) Malkov, A. V.;
Stewart-Liddon, A. J. P.; McGeoch, G. D.; Ramirez-Lopez,
P.; Kočovský, P. Org. Biomol. Chem. 2012, 10, 4864.
(b) Malkov, A. V.; Stončius, S.; Vranková, K.; Arndt, M.;
Kočovský, P. Chem. Eur. J. 2008, 14, 8082. (c) Malkov, A.
V.; Stončius, S.; Kočovský, P. Angew. Chem. Int. Ed. 2007,
46, 3722. (d) Malkov, A. V.; Liddon, A. J. P. S.; Ramirez-
Lopez, P.; Bendova, L.; Haigh, D.; Kočovský, P. Angew.
Chem. Int. Ed. 2006, 45, 1432. (e) Wang, Z. Y.; Wang, C.;
Zhou, L.; Sun, J. Org. Biomol. Chem. 2013, 11, 787. (f) Liu,
X. W.; Yan, Y.; Wang, Y. Q.; Wang, C.; Sun, J. Chem. Eur.
J. 2012, 18, 9204. (g) Xiao, Y. C.; Wang, C.; Yao, Y.; Sun,
J.; Chen, Y. C. Angew. Chem. Int. Ed. 2011, 50, 10661.
(h) Wu, X. J.; Li, Y.; Wang, C.; Zhou, L.; Lu, X. X.; Sun, J.
Chem. Eur. J. 2011, 17, 2846. (i) Onomura, O.; Kouchi, Y.;
Iwasaki, F.; Matsumura, Y. Tetrahedron Lett. 2006, 47,
3751. (j) Genoni, A.; Benaglia, M.; Massolo, E.; Rossi, S.
Chem. Commun. 2013, 49, 8365. (k) Guizzetti, S.; Benaglia,
M.; Bonsignore, M.; Raimondi, L. Org. Biomol. Chem.
2011, 9, 739. (l) Guizzetti, S.; Benaglia, M.; Rossi, S. Org.
Lett. 2009, 11, 2928. (m) Sugiura, M.; Kumahara, M.;
Nakajima, M. Chem. Commun. 2009, 3585. (n) Jones, S.;
Zhao, P. C. Tetrahedron: Asymmetry 2014, 25, 238.
(o) Jones, S.; Li, X. F. Tetrahedron 2012, 68, 5522.
(p) Kashiwagi, T.; Kotani, S.; Nakajima, M.; Sugiura, M.
Tetrahedron Lett. 2014, 55, 1924. (q) Jiang, Y.; Chen, X.;
Hu, X. Y.; Shu, C.; Zhang, Y. H.; Zheng, Y. S.; Lian, C. X.;
chromatography (silica gel; hexane–EtOAc, 10:1) afforded
the products. The ee values were determined using
established HPLC techniques with chiral stationary phases.
(14) Ethyl 2-(3,4-Dimethoxyphenyl)-3-(4-methoxyphenyl-
amino)propanoate (2e)
Yield 99%; 77% ee; light yellow oil. 1H NMR (300 MHz,
CDCl3): δ = 6.76–6.84 (m, 5 H), 6.58 (d, J = 8.8 Hz, 2 H),
4.10–4.19 (m, 2 H), 3.86 (s, 6 H), 3.79–3.83 (m, 1 H), 3.72–
3.74 (m, 4 H), 3.59 (br s, 1 H), 1.18–1.28 (m, 3 H) ppm. 13
C
NMR (75 MHz, CDCl3): δ = 173.0, 152.3, 149.1, 148.4,
141.4, 129.2, 120.3, 114.9, 114.6, 114.3, 110.9, 60.9, 55.8,
55.7, 50.3, 47.9, 14.0 ppm. ESI-HRMS: m/z calcd for
[C20H25NO5 + H]+: 360.1811; found: 330.1804. [α]D20 +112
(c 0.50, CHCl3). AD-H column (n-hexane–2-PrOH, 80:20),
flow rate = 1.0 mL/min, tR = 16.7, 17.9 min.
Synlett 2014, 25, 1879–1882
© Georg Thieme Verlag Stuttgart · New York