C O M M U N I C A T I O N S
Table 2. Enantioselective Ene Reaction with Various Enophiles
Co. for providing BINAP derivatives and SEGPHOS and to
Dowpharma for giving DUPHOS. This work was supported by a
Grant-in-Aid for Scientific Research on Priority Areas “Advanced
Molecular Transformations of Carbon Resources” from the Ministry
of Education, Culture, Sports, Science and Technology, Japan. This
paper is dedicated to Prof. Frederick E. Ziegler for his contribution
to synthetic organic chemistry.
Supporting Information Available: Experimental procedures and
compound characterization data. This material is available free of charge
References
(1) (a) Mukaiyama, T. Org. React. 1982, 28, 203. (b) Mahrwald, R. Chem.
ReV. 1999, 99, 1095. (c) Carreira, E. M. In Catalytic Asymmetric Synthesis;
Ojima, I., Ed.; Wiley-VCH: New York, 2000; Chapter 8B2. (d)
Machajewski, T. D.; Wong, C.-H.; Lerner, R. A. Angew. Chem., Int. Ed.
2000, 39, 1352. (e) Palomo, C.; Oiarbide, M.; Garcia, J. M. Chem. Soc.
ReV. 2004, 33, 65.
(2) Examples of chiral alcohols with quaternary carbon centers: (a) Harris,
G. H.; Jones, E. T. T.; Meinz, M. S.; Nallin-Omstead, M.; Helms, G. L.;
Bills, G. F.; Zink, D.; Wilson, K. E. Tetrahedron Lett. 1993, 34, 5235.
(b) Tan, L.; Chen, C.-Y.; Larsen, R. D.; Verhoeven, T. R.; Reider, P. J.
Tetrahedron Lett. 1998, 39, 3961. (c) Oxybutynin: Senanayake, C. H.;
Fang, K.; Grover, P.; Bakale, R. P.; Vandenbossche, C. P.; Wald, S. A.
Tetrahedron Lett. 1999, 40, 819.
a Reaction time was 18 h. b Isolated yield. c Enantiopurity was determined
by HPLC analysis after desilylation to â-hydroxyketone 4. d Enantiopurity
was determined by GC analysis after desilylation to â-hydroxyketone 4.
Scheme 2. Low Catalyst Loading of SEGPHOS-Pd Complex
(3) Mukaiyama, T.; Narasaka, K.; Banno, K. Chem. Lett. 1973, 2, 1011.
(4) Examples of asymmetric Mukaiyama-aldol reactions. (a) Carreira, E. M.;
Singer, R. A.; Lee, W. J. Am. Chem. Soc. 1994, 116, 8837. (b) Evans, D.
A.; Murry, J. A.; Kozlowski, M. C. J. Am. Chem. Soc. 1996, 118, 5814.
(c) Ferraris, D.; Young, B.; Dudding, T.; Lectka, T. J. Am. Chem. Soc.
1998, 120, 4548. (d) Langner, M.; Bolm, C. Angew. Chem., Int. Ed. 2004,
43, 5984.
(5) (a) Mikami, K.; Matsukawa, S. J. Am. Chem. Soc. 1993, 115, 7039. (b)
Mikami, K.; Matsukawa, S. J. Am. Chem. Soc. 1994, 116, 4077.
(6) (a) Ruck, R. T.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 2882. (b)
Ruck, R. T.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2003, 42, 4771.
(7) Reviews on the construction of quaternary carbon centers: (a) Martin, S.
F. Tetrahedron 1980, 36, 419. (b) Fuji, K. Chem. ReV. 1993, 93, 2037.
(c) Corey, E. J.; Guzman-Perez, A. Angew. Chem., Int. Ed. 1998, 37,
388. (d) Douglas, C. J.; Overman, L. E. Proc. Natl. Acad. Sci. U.S.A.
2004, 101, 5363. (e) Trost, B. M.; Jiang, C. Synthesis 2006, 369.
(8) We have reported Pd-catalyzed asymmetric ene reactions. (a) Aikawa,
K.; Kainuma, S.; Hatano, M.; Mikami, K. Tetrahedron Lett. 2004, 45,
183. (b) Hao, J.; Hatano, M.; Mikami, K. Org. Lett. 2000, 2, 4059.
(9) Cu-catalyzed asymmetric ketoester-ene reactions. (a) Evans, D. A.; Tregay,
S. W.; Burgey, C. S.; Paras, N. A.; Vojkovsky, T. J. Am. Chem. Soc.
2000, 122, 7936. Sc-catalyzed asymmetric carbonyl-ene reactions. (b)
Evans, D. A.; Wu, J. J. Am. Chem. Soc. 2005, 127, 8006.
Scheme 3. Hetero Two-Directional Reaction by BINOL/Ti(OiPr)4
Catalyst
(10) Catalytic asymmetric reactions by using ketoester. (a) Dimauro, E. F.;
Kozlowski, M. C. J. Am. Chem. Soc. 2002, 124, 12668. (b) Jiang, B.;
Chen, Z.; Tang, X. Org. Lett. 2002, 4, 3451. (c) Funabashi, K.; Jachmann,
M.; Kanai, M.; Shibasaki J. Am. Chem. Soc. 2002, 124, 12668.
(11) Whether AgCl was filtered or not, the condition of 10 mol % AgSbF6 to
5 mol % Pd complex gave almost the same result. We had confirmed
that AgSbF6 did not catalyze the reaction. Therefore, there is no
participation of silver salt in this reaction.
(12) Saito, T.; Yokozawa, T.; Ishizaki, T.; Moroi, T.; Sayo, N.; Miura, T.;
Kumobayashi, H. AdV. Synth. Catal. 2001, 343, 264.
(13) The use of 2-(triisopropyl)siloxy-1-butene instead of 1 gave the ene product
in 91% yield, E/Z ) 7/3, 85% ee (enantiopurity was determined after
desilylation of E- and Z-isomer mixture).
(14) Sodeoka and Shibasaki reported Pd-catalyzed asymmetric aldol reaction
via Pd enolate. The aldol product would be obtained via Pd enolate. (a)
Sodeoka, M.; Ohrai, K.; Shibasaki, M. J. Org. Chem. 1995, 60, 2648. (b)
Hamashima, Y.; Sodeoka, M. Chem. Rec. 2004, 4, 231.
(15) The absolute configuration was determined in comparison of the value of
optical rotation. Evans, D. A.; Kozlowski, M. C.; Burgey, C. S.;
MacMillan, D. W. C. J. Am. Chem. Soc. 1997, 119, 7893.
(16) (a) Willis, M. C. J. Chem. Soc., Perkin Trans. 1 1999, 1765. (b) Mikami,
K.; Yoshida, A. J. Syn. Org. Chem. Jpn. 2002, 60, 732. (c) Rovis, T. In
New Frontiers in Asymmetric Catalysis; Mikami, K., Lautens, M., Eds.;
Wiley: New York, 2007; Chapter 10.
(17) Reviews on tandem (domino) reactions: (a) Ziegler, F. E. In Compre-
hensiVe Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon:
New York, 1991; Vol. 6, p. 875. (b) Tietze, L. F. Chem. ReV. 1996, 96,
115. Wender, P. A., Ed. Chem. ReV. 1996, 96 (thematic issue). (c) Nakai,
T.; Mikami, K. Kagaku no Ryoiki 1982, 36, 661; Chem. Abstr. 1982, 96,
16001.
substrate/catalyst ratio, namely S/C 10,000 at 0 °C, the high yield
and enantioselectivity could be obtained.
Next, our attention was focused on heterocombination of ene
reaction sequence17 with 3a (92% ee R) by using chiral BINOL-Ti
catalyst (Scheme 3).18 In the presence of 10 mol % (S)-BINOL/
Ti(OiPr)4, the reaction with ethyl glyoxylate 5 afforded the mixture
of ene,18 Friedel-Crafts,19 and aldol products.20 However, diol (R)/
(S)-6 bearing both quaternary and tertiary carbon centers was ob-
tained in 67% yield and >99% ee (92% diastereoselectivity) after
desilylation by TBAF. In contrast, the treatment with (R)-BINOL-
Ti catalyst led to the diol (R)/(R)-6 in 61% yield and 97% ee (dr )
91/9).
In summary, we have succeeded in dicationic SEGPHOS-Pd
complex-catalyzed ketoester-ene reaction, which constructs highly
optically active â-hydroxy silyl enol ether with quaternary carbon
center. We have also succeeded in lowering the catalyst loading
up to 0.01 mol % without significant decrease in the yield and
enantioselectivity. This low catalyst loading will open the door to
industrial applications of the present chiral Lewis acid catalysis.
Further investigations on engineered Lewis acid catalysis of tandem
reactions are currently in progress.
(18) Homo two-directional glyoxylate-ene reaction: Mikami, K.; Matsukawa,
S.; Nagashima, M.; Funabashi, H.; Morishima, H. Tetrahedron Lett. 1997,
38, 579.
(19) Ishii, A.; Kojima, J.; Mikami, K. Org. Lett. 1999, 1, 2013.
(20) These three products were incompletely separated by silica-gel chroma-
tography and transformed into 6 with TBAF.
Acknowledgment. We are grateful to Prof. John M. Brown for
providing QUINAP. We are also grateful to Takasago International
JA076539F
9
J. AM. CHEM. SOC. VOL. 129, NO. 43, 2007 12951