Organic Letters
Letter
(2) Hoberg, J. O. Tetrahedron 1998, 54, 12631−12670.
(3) Kleinke, A. S.; Webb, D.; Jamison, T. F. Tetrahedron 2012, 68,
6999−7018.
Scheme 5. (A) Gram-Scale Reaction; (B) Derivatization of
HFIP-Acetals
(4) Illuminati, G.; Mandolini, L. Acc. Chem. Res. 1981, 14, 95−102.
(5) Winnik, M. A. Chem. Rev. 1981, 81, 491−524.
(6) Zhang, J.; Wang, X.; Wang, W.; Quan, W.; She, X.; Pan, X.
Tetrahedron 2007, 63, 6990−6995.
(7) Nicolaou, K. C.; McGarry, D. G.; Somers, P. K.; Kim, B. H.;
Ogilvie, W. W.; Yiannikouros, G.; Prasad, C. V. C.; Veale, C. A.; Hark,
R. R. J. Am. Chem. Soc. 1990, 112, 6263−6276.
(8) Blumenkopf, T. A.; Bratz, M.; Castaneda, A.; Look, G. C.;
Overman, L. E.; Rodriguez, D.; Thompson, A. S. J. Am. Chem. Soc.
1990, 112, 4386−4399.
(9) Ghosh, A. K.; Tomaine, A. J.; Cantwell, K. E. Org. Lett. 2016, 18,
396−399.
(10) Nicolaou, K. C.; Prasad, C.; Somers, P. K.; Hwang, C. K. J. Am.
Chem. Soc. 1989, 111, 5335−5340.
(11) Hoberg, J. O. J. Org. Chem. 1997, 62, 6615−6618.
(12) Criegee, R. Eur. J. Org. Chem. 1948, 560, 127−135.
(13) Goodman, R. M.; Kishi, Y. J. Org. Chem. 1994, 59, 5125−5127.
(14) Beaulieu, M.-A.; Guerard, K. C.; Maertens, G.; Sabot, C.;
Canesi, S. J. Org. Chem. 2011, 76, 9460−9471.
(15) Chanu, A.; Safir, I.; Basak, R.; Chiaroni, A.; Arseniyadis, S. Eur. J.
Org. Chem. 2007, 2007, 4305−4312.
rearrangement of tertiary alcohols. The reaction is tolerant of a
range of substitutions at both the tertiary alcohol and the
aromatic ring, allowing access to products with diverse scaffolds
and functional handles. The resulting acetals are readily
derivatized allowing for further functionalization of the ether
moiety. The reaction is enabled by the unique reactivity of
(poly)cationic hypervalent iodine reagents, and this represents
the first synthetic application of this underexplored class of
reagents. Studies to extend this reaction to other heteroatoms
as well as secondary alcohols are ongoing in our laboratory and
will be reported in due course.
(16) Abo, T.; Sawaguchi, M.; Senboku, H.; Hara, S. Molecules 2005,
10, 183−189.
(17) Ohno, M.; Oguri, I.; Eguchi, S. J. Org. Chem. 1999, 64, 8995−
9000.
(18) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299−5358.
(19) Zagulyaeva, A. A.; Banek, C. T.; Yusubov, M. S.; Zhdankin, V. V.
Org. Lett. 2010, 12, 4644−4647.
(20) Miyamoto, K.; Sakai, Y.; Goda, S.; Ochiai, M. Chem. Commun.
2012, 48, 982−984.
(21) Ting, C. P.; Maimone, T. J. J. Am. Chem. Soc. 2015, 137, 10516−
10519.
(22) Uyanik, M.; Fukatsu, R.; Ishihara, K. Org. Lett. 2009, 11, 3470−
3473.
ASSOCIATED CONTENT
* Supporting Information
(23) Togo, H.; Katohgi, M. Synlett 2001, 5, 565−581.
(24) Weiss, R.; Seubert, J. Angew. Chem., Int. Ed. Engl. 1994, 33, 891−
893.
■
S
The Supporting Information is available free of charge on the
(25) Pirkuliyev, N. S.; Brel', V. K.; Zhdankin, V. V.; Zefirov, N. S.
Russ. J. Org. Chem. 2002, 38, 1224−1225.
(26) Zhdankin, V. V.; Koposov, A. Y.; Yashin, N. V. Tetrahedron Lett.
2002, 43, 5735−5737.
Experimental procedures; characterization for all new
Crystallographic data for 18 (CIF)
Crystallographic data for 22 (CIF)
̌
(27) Niedermann, K.; Welch, J. M.; Koller, R.; Cvengros, J.; Santschi,
N.; Battaglia, P.; Togni, A. Tetrahedron 2010, 66, 5753−5761.
(28) Corbo, R.; Pell, T. P.; Stringer, B. D.; Hogan, C. F.; Wilson, D. J.
D.; Barnard, P. J.; Dutton, J. L. J. Am. Chem. Soc. 2014, 136, 12415−
12421.
AUTHOR INFORMATION
Corresponding Author
(29) Corbo, R.; Georgiou, D. C.; Wilson, D. J. D.; Dutton, J. L. Inorg.
Chem. 2014, 53, 1690−1698.
■
(30) Lee, E.; Kamlet, A. S.; Powers, D. C.; Neumann, C. N.;
Boursalian, G. B.; Furuya, T.; Choi, D. C.; Hooker, J. M.; Ritter, T.
Science 2011, 334, 639−642.
Notes
(31) Lee, E.; Hooker, J. M.; Ritter, T. J. Am. Chem. Soc. 2012, 134,
17456−17458.
The authors declare no competing financial interest.
(32) In the case of products 25 and 34, the preferential formation of
the enol ether can be rationalized by the resulting acetals being much
more prone to ionization to the corresponding oxoniums relative to
the other substrates (benzylic in 25 and more electron-rich in 34),
resulting in subsequent elimination.
ACKNOWLEDGMENTS
■
This research was conducted with the generous financial
support of Temple University. J.C.W. was supported by a
Temple University Future Faculty Fellowship. We would like to
thank Prof. Michael Zdilla and Michael Gau (Temple
University) for their assistance in acquiring X-ray structures.
We would also like to thank Susan Gramlich (Temple
University) for her work on the synthesis of various hypervalent
iodine reagents.
(33) Silva, L. F.; Vasconcelos, R. S.; Nogueira, M. A. Org. Lett. 2008,
10, 1017−1020.
(34) Vasconcelos, R. S.; Silva, L. F.; Giannis, A. J. Org. Chem. 2011,
76, 1499−1502.
REFERENCES
(1) Yasumoto, T.; Murata, M. Chem. Rev. 1993, 93, 1897−1909.
■
D
Org. Lett. XXXX, XXX, XXX−XXX