Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
supported by DFT calculations by Liu, Guo et al.,4f and very
recently established by Hartwig et al.,4k for N-nucleophiles.
In conclusion, cross-coupling reactions of ArX (X = I, Br)
and nucleophiles can be performed by using a Cu0 precursor
which will be transformed in situ into a CuI species by its reaction
with ArX at the very beginning of the catalytic reactions.
Table 1 Reduction peak potential Epred of ArX (X = I, Br, Cl) in
acetonitrile. Results of the electrolyses performed in the presence of
catalytic Cu(CH3CN)4PF6 and 1,10-phenanthroline.
ArH ArX
Ce F/molf (%)g (%)h
b
c
electd
red
ArXa
Epred (E0red
)
E
4-CNC6H4I
C6H5I
4-CH3C6H4I
4-CH3OC6H4I
4-NCC6H4Br
À2.00 (À1.81) À1.5 106 2.0
À2.51 (À1.91) À1.5 112 2.11
78
—
0
0
0
2
0
i
À2.43
À2.26
À1.5 115 2.17
À1.5 106 2.0
12i
76
80
54
0
À2.11 (À1.94) À1.5 123 2.3
Moreover, such reaction can be used for preparative purpose
since the electrogenerated Cu0(phenanthroline) catalyses the
selective electrochemical reduction of ArX (X = I, Br) to ArH.
We thank ANR (ANR-07-CP2D-08-03), the Centre National
de la Recherche Scientifique and the Ministere de la Recherche
4-CH3OC6H4Br oÀ2.8
À1.5 119 2.24
0
100
4-NCC6H4Cl
À2.16 (À2.03) À1.5
26 0.49
a
ArX = 0.5 mmol in 12 mL of acetonitrile containing nBu4NBF4
b
(0.3 M). Peak potentials vs. SCE at a steady glassy carbon disk electrode
(d = 1 mm) at the scan rate of 0.5 V sÀ1, 20 1C. Standard reduction
c
potentials of ArX vs. SCE in DMF at 20 1C.9b d Cathodic electrolysis
potential. C: charge passed through the cell expressed in Coulomb
(Ecole Normale Superieure) for supporting this work.
´
e
(theoretical charge: 106 C). f Faraday per mol. Isolated yield.
g
Notes and references
h
i
Recovered. ArH was isolated in low yield due to low boiling point.
1 (a) F. Ullmann, Ber. Dtsch. Chem. Ges., 1903, 36, 2382; (b) I.
Goldberg, Ber. Dtsch. Chem. Ges., 1906, 39, 1691–1692.
(À1.5 V) delivered after consumption of 2 electrons per mole of
ArX the corresponding ArH after fast protonation of ArÀ by the
solvent (Table 1). When an electrolysis was performed from
4-CN–C6H4–Cl at À1.5 V, the reduction current dropped to zero
2 (a) S. V. Ley and A. W. Thomas, Angew. Chem., Int. Ed., 2003, 42,
5400; (b) I. P. Beletskaya and A. V. Cheprakov, Coord. Chem.
Rev., 2004, 248, 2337; (c) J. P. Corbet and G. Mignani, Chem. Rev.,
2006, 106, 2651; (d) F. Monnier and M. Taillefer, Angew. Chem.,
Int. Ed., 2008, 47, 3096.
3 (a) M. Taillefer, H.-J. Cristau, P. P. Cellier and J.-F. Spindler, Fr
2833947-WO 0353225 (Pr. Nb. Fr 2001 16547), 2001; (b) S. L.
Buchwald, A. Klapars, J. C. Antilla, G. E. Job, M. Wolter, F. Y.
Kwong, G. Nordmann and E. J. Hennessy, WO 02/085838
(Pr. Nb. US 2001 0286268), 2001; (c) M. Taillefer, H.-J. Cristau,
P. P. Cellier, J.-F. Spindler and A. Ouali, Fr 2840303-WO
03101966 (Pr. Nb. Fr 2002 06717), 2002.
4 (a) A. J. Paine, J. Am. Chem. Soc., 1987, 109, 1496; (b) H. L. Aalten,
G. van Koten, D. M. Grove, T. Kuilman, O. G. Piekstra, L. A.
Hulshof and R. A. Sheldon, Tetrahedron, 1989, 45, 5565; (c) E. R.
Streiter, D. G. Blackmond and S. L. Buchwald, J. Am. Chem. Soc.,
2005, 127, 4120; (d) A. Ouali, J.-F. Spindler, A. Jutand and M. Taillefer,
Organometallics, 2007, 26, 65; (e) A. Ouali, J.-F. Spindler, A. Jutand
and M. Taillefer, Adv. Synth. Catal., 2007, 349, 1906; (f) S.-L. Zhang,
L. Liu, Y. Fu and Q.-X. Guo, Organometallics, 2007, 26, 4546; (g) R.
A. Altman, E. D. Koval and S. L. Buchwald, J. Org. Chem., 2007, 72,
6190; (h) H.-Q. Do and O. Daugulis, J. Am. Chem. Soc., 2008, 130,
1128; (i) L. M. Huffman and S. S. Stahl, J. Am. Chem. Soc., 2008, 130,
9196; (j) R. A. Altman, A. M. Hyde, X. Huang and S. L. Buchwald, J.
Am. Chem. Soc., 2008, 130, 9613; (k) J. W. Tye, Z. Weng, A. M. Johns,
C. D. Incarvito and J. F. Hartwig, J. Am. Chem. Soc., 2008, 130, 9971.
5 (a) A. Kiyomori, J.-F. Marcoux and S. L. Buchwald, Tetrahedron
Lett., 1999, 40, 2657; (b) H. B. Goodbrand and N. X. Hu, J. Org.
Chem., 1999, 64, 670; (c) R. K. Gujadhur, C. G. Bates and
D. Venkataraman, Org. Lett., 2001, 3, 4315; (d) H.-J. Cristau, A.
Oualli, J.-F. Spindler and M. Taillefer, Chem. Eur. J., 2005, 11, 2483.
6 M. Meyer, A.-M. Albrecht-Gary, C. O. Dietrich-Buchecker and
J. P. Sauvage, Inorg. Chem., 1999, 38, 2279.
+
just after the reduction of the complex CuI(phen)S2 and no
PhCN was produced in agreement with the absence of catalytic
current observed on the cyclic voltammogram.
Therefore, the electrogenerated Cu0(phen) complex cata-
lyses the reduction of ArX (X = I, Br) to ArÀ at a potential
which is less negative than the reduction potentials of ArX
(Table 1). Such reactions generate a CuI complex after activa-
tion of the aryl halide by electron transfer in an inner sphere
mechanism (see ESIw).
This electrochemical reduction of ArX to ArH catalysed by
a Cu0 moiety is unprecedented. The reaction is selective since
no biaryl ArAr is formed. This contrasts with the reported
electrochemical reduction of ArX in the presence of Pd or Ni
catalysts which do not provide any arene ArH (except as by-
product) but the homocoupling product ArAr.10 This is a
consequence of the formation of Ar–PdII–X or Ar–NiII–X
complexes by oxidative addition of ArX to electrogenerated
Pd0 or Ni0 complexes, respectively.10
All our attempts to characterize Ar–CuIII complexes formed
by oxidative addition of ArX to the cationic CuI(phen)S2
+
failed. The reaction of 4-NC–C6H4–I with the neutral yellow
complex CuBr(PPh3)(phen) in reflux toluene provided an
elusive pale green complex whose ESI MS revealed the for-
mation of 4-NC–C6H4–CuIII–Br(phen)+ by an oxidative ad-
dition. But the reaction has never been reproduced. Cationic
CuI complexes must be a priori poor candidates for the
activation of Ar–X bond (X = I, Br, Cl) by oxidative addition
owning to their cationic character.11 However, DFT calcula-
tions by Liu, Guo et al.4f suggest that the oxidative addition
could take place from a cationic CuI. In the presence of a
nucleophile (NuÀ or NuH + base), neutral complexes
Nu–CuILn must be formed and be good candidates for the
oxidative addition of ArX, as proposed by Buchwald et al.,4g,j
7 A. J. Bard and L. R. Faulkner, Electrochemical Methods.
Fundamentals and Applications, Wiley, New York, 2001, 2nd edn.
8 (a) W. J. Geary, Coord. Chem. Rev., 1971, 7, 81; (b) A. Jutand, Eur.
J. Inorg. Chem., 2003, 2017.
9 (a) We are conscious that we are not comparing standard poten-
tials E0 but peak potentials Ep which slightly differ from standard
potentials7; (b) For comparison, the standard potentials E0 of ArX
determined in DMF are given in Table 1, see: R. J. Enemaerke,
T. B. Christensen, H. Jensen and K. Daasbjerg, J. Chem. Soc.,
Perkin Trans. 2, 2001, 1620.
10 For a recent review, see: A. Jutand, Chem. Rev., 2008, 108, 2300.
11 For some examples, see: (a) T. Osaka, K. D. Karlin and S. Itoh,
Inorg. Chem., 2005, 44, 410; (b) D. Maiti, A. A. N. Sarjeant, S. Itoh
and K. D. Karlin, J. Am. Chem. Soc., 2008, 130, 5644.
ꢀc
This journal is The Royal Society of Chemistry 2008
Chem. Commun., 2008, 6051–6053 | 6053