group tolerance (entry 10), however, the oxidative nitriles
synthesis of mesitaldehyde showed poor conversion and yield
presumably due to steric reason (entries 11). Not only vinyl
aldehyde such as cinnamaldehyde but also polyaromatic
aldehyde such as 1-naphthaldehyde underwent the developed
oxidative transformation smoothly (entries 12–13). In addition,
heteroaromatic nitrile was also synthesized (entry 14).
Interestingly, 1,3-dicyanobenzene was produced by the oxidation
of isophthalaldehyde (entry 15).22
to give the corresponding nitriles in good yields. The present
oxidative protocol was effective on large scale. The used
-
oxoammonium salt, 4-AcNH-TEMPO+BF4 , could be recycled by
the simple acid-base extraction and following oxidation with
HBF4, NaOCl, and NaBF4.
Acknowledgments
This work was supported by the Incheon National University
Research Grant in 2014.
-
Table 3. Substrate scope of 4-AcNH-TEMPO+BF4 mediated
oxidative transformation of benzaldehydes.a
Supplementary Material
Supplementary data (experimental procedures for oxidative
nitrile synthesis, and H and 13C NMR spectra of the products)
associated with this article can be found, in the online version, at
1
Entry
1
Product
Yield(%) Entry
Product
Yield(%)
83
77
84
9
References and notes
1. (a) The Chemistry of the Cyano Group (Eds.: Rappoport, Z.; Patai,
S.), Wiley, London, 1970; (b) Fatiadi, A. J. in The Chemistry of
Functional Groups, Supplement C: The Chemistry of Triple-
Bonded Functional Groups, Part 2 (Eds.: Rappoport, Z.; Patai,
S.), Wiley, London, 1983, pp. 1057–1303.
2
10
78
2. (a) Kleemann, A.; Engel, J.; Kutscher, B.; Reichert, D.
Pharmaceutical Substances: Syntheses, Patents, Applications, 4th
ed., Georg Thieme, Stuttgart, 2001; (b) Fleming, F. F.; Yao, L.;
Ravikumar, P. C.; Funk, L.; Shook, B. C. J. Med. Chem. 2010, 53,
7902–7917; (c) Miller, J. S.; Manson, J. L. Acc. Chem. Res. 2001,
34, 563–570.
3
4
5
6
83
81
73
92
11
12
13
50
74
91
3. Mowry, D. T. Chem. Rev. 1948, 42, 189–283.
4. (a) Sandmeyer, T. Ber. Dtsch. Chem. Ges. 1884, 17, 1633–1635;
(b) Hodgson, H. H. Chem. Rev. 1947, 40, 251–277; (c) Galli, C.
Chem. Rev. 1988, 88, 765–792.
5. (a) Rosenmund, K. W.; Struck, E. Ber. Dtsch. Chem. Ges. 1919,
52, 1749–1756; (b) Lindley, J. Tetrahedron 1984, 40, 1433–1456.
6. (a) Kim, J.; Chang, S. J. Am. Chem. Soc. 2010, 132, 10272–
10274; (b) Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem.
Int. Ed. 2011, 50, 519 –522; (c) Kim, J.; Kim, H. J.; Chang, S.
Angew. Chem. Int. Ed. 2012, 51, 11948–11959.
7. (a) Yamaguchi, K.; Mizuno, N. Angew. Chem. Int. Ed. 2003, 42,
1480–1483; (b) Iida, S.; Togo, H. Tetrahedron 2007, 63, 8274–
8281; (c) Veisi, H. Synthesis 2010, 2631–2635; (d) Kim, J.; Stahl,
S. S. ACS Catalysis 2013, 3, 1652–1656; (e) Xu, B.; Hartigan, E.
M.; Feula, G.; Huang, Z.; Lumb, J.-P.; Arndtsen, B. A. Angew.
Chem. Int. Ed. 2016, 55, 15802–15806.
14
15
51
50
7
8
79
68
8. (a) Ruck, R. T.; Bergman, R. G. Angew. Chem. Int. Ed. 2004, 43,
5375–5377; (b) Zhou, S.; Addis, D.; Das, S.; Junge, K.; Beller, M.
Chem. Commun. 2009, 4883–4885; (c) Itagaki, S.; Kamata, K.;
Yamaguchi, K.; Mizuno, N. ChemCatChem 2013, 5, 1725–1728;
(d) Elangovan, S.; Quintero-Duque, S.; Dorcet, V.; Roisnel, T.;
Norel, L.; Darcel, C.; Sortais, J.-B. Organometallics 2015, 34,
4521–4528.
9. (a) Ishihara, K.; Furuya, Y.; Yamamoto, H. Angew. Chem. Int. Ed.
2002, 41, 2983–2986; (b) Choi, E.; Lee, C.; Na, Y.; Chang, S.
Org. Lett. 2002, 4, 2369–2371; (c) Zhang, X.; Sun, J.; Ding, Y.;
Yu, L. Org. Lett. 2015, 17, 5840–5842.
10. (a) Chen, F.-E.; Fu, H.; Meng, G.; Cheng, Y.; , Y.-X. Synthesis
2000, 1519–1520; (b) Talukdar, S.; Hsu, J.-L.; Chou, T.-C.; Fang,
J.-M. Tetrahedron Lett. 2001, 42, 1103–1105; (c) Telvekar, V. N.;
Patel, K. N.; Kundaikar, H. S.; Chaudhari, H. K. Tetrahedron Lett.
2008, 49, 2213–2215; (d) Zhu, C.; Sun, C.; Wei, Y. Synthesis
2010, 4235–4241; (e) Reddy, M. B. M.; Pasha, M. A. Synth.
Commun. 2011, 41, 2081–2085; (f) Zhu, Y.-Z.; Zhang, X.-Q.; Liu,
F.; Gu, H.-M.; Zhu, H.-L. Synth. Commun. 2013, 43, 2943–2948;
(g) Fang, C.; Li, M.; Hu, X.; Mo, W.; Hu, B.; Sun, N.; Jin, L.;
Shen, Z. RSC Adv. 2017, 7, 1484–1489.
a Reaction conditions: aldehyde (0.3 mmol), 4-AcNH-TEMPO+BF4- (2.0
equiv), NH4OAc (4.0 equiv) in AcOH (0.6 mL) under N2 balloon at 70 oC for
12 h.
The present oxidative nitriles synthesis was effective on larger
scale (Scheme 2). The exposure of 10 mmol of octanal to the
present reaction conditions provide octanenitrile in 71% yield. In
large scale, the use of stoichiometric amount of oxoammonium
salt was not plausible, however, the 4-AcNH-TEMPO radical
-
which is a reduced form of the used 4-AcNH-TEMPO+BF4 was
collected by simple acid-base extraction.23 The addition of HBF4,
-
NaOCl, and NaBF4 could regenerate 4-AcNH-TEMPO+BF4 for
recycle (50 %).24
11. (a) Oishi, T.; Yamaguchi, K.; Mizuno, N. Angew. Chem. Int. Ed.
2009, 48, 6286–6288; (b) Ishida, T.; Watanabe, H.; Takei, T.;
Hamasaki, A.; Tokunaga, M.; Haruta, M. Appl. Catal. A 2012,
425, 85–90; (c) Nie, R.; Shi, J.; Xia, S.; Shen, L.; Chen, P.; Hou,
Z.; Xiao, F.-S. J. Mater. Chem. 2012, 22, 18115–18118; (d) Tao,
C.; Liu, F.; Zhu, Y.; Liu, W.; Cao, Z. Org. Biomol. Chem. 2013,
11, 3349–3354; (e) Yin, W.; Wang, C.; Huang, Y. Org. Lett. 2013,
15, 1850–1853; (f) Dornan, L. M.; Cao, Q.; Flanagan, J. C. A.;
Scheme 2. Oxidative nitriles synthesis on larger scale.
In conclusion, we have developed oxoammonium salt-
mediated oxidative aldehydes to nitriles transformation with
readily accessible NH4OAc. Aliphatic aldehydes as well as
benzaldehydes underwent the developed oxidative transformation