Oxidative desulfurization of DBT in n-octane
9 J. T. Sampanthar, H. Xiao, J. Dou, T. Y. Nah, X. Rong and W. P.
Kwan, Appl. Catal. B, 2006, 63, 85–93.
0.056 g DBT was dissolved in 10 mL n-octane to form the
model oil, the sulfur content of which was 1000 mg mL-1. IL
(1–10 mL) was then added and mixed with the oil. The sulfur
content of oil was detected using a micro coulometer with the
process of extraction. After 10 min, the sulfur content of oil did
not change which meant that the extraction equilibrium of DBT
in oil and ionic liquid phase was reached. 30 wt% H2O2 and
an equal volume of AcOH were added to the mixture, which
was then stirred vigorously. The upper phase (model oil) was
periodically withdrawn and analyzed for sulfur content using a
micro coulometer.
10 M. Schilderman, S. Raeissi and C. J. Peters, Fluid Phase Equilibria,
2007, 260, 19–22.
11 Y. P. Tzeng, C. W. Shen and T. Yu, Journal of Chromatography A,
2008, 1193, 1–6.
12 E. K. Goharshadi, Y. Ding and P. Nancarrow, Journal of Physics and
Chemistry of Solids, 2008, 69, 2057–2060.
13 B. C. Ranu, S. Banerjee and A. Das, Tetrahedron Letters, 2006, 47,
881–884.
14 D. Wei and A. Ivaska, Analytica Chimica Acta, 2008, 607, 126–135.
15 T. Welton, Coordination Chemistry Reviews, 2004, 248, 2459–2477.
16 A. Bo¨smann, L. Datsevich, A. Jess, A. Lauter, C. Schmitz and P.
Wasserscheid, Chem. Commun., 2001, 2494–2495.
17 R. Schmidt, Energy Fuels, 2008, 22, 1774–1778.
18 S. Zhang and Z. C. Zhang, Green Chem., 2002, 4, 376–379.
19 S. Zhang, Q. Zhang and Z. C. Zhang, Ind. Eng. Chem. Res., 2004,
43, 614–622.
Recovery/regeneration of used ionic liquid
20 J. Eßer, P. Wasserscheid and A. Jess, Green Chem., 2004, 6, 316–322.
21 C. Huang, B. Chen, J. Zhang, Z. Liu and Y. Li, Energy Fuels, 2004,
18, 1862–1864.
At the end of each run, the ionic liquid phase was separated by
decantation from the oil phase. The oxidizing agents were then
evaporated from the ionic liquid phase at 100 ◦C for 3 h by rotary
evaporation. The DBTO2 was not removed from the ionic liquid.
The fresh H2O2, AcOH and model oil were introduced for the
next reaction under the same conditions as described above. By
this procedure, the DBTO2 was accumulated in the ionic liquid
successively. The solubility of DBTO2 in BTMAC·2ZnCl2 ionic
liquid is about 1805 ppm calculated by S-content and DBTO2 is
insoluble in n-octane. After four times, there was yellow solid,
i.e. DBTO2 in the ionic liquid phase. Then DBTO2 was reclaimed
from the ionic liquid by centrifugation and the ionic liquid was
reused.27,29
22 Y. Nie, C. Li, A. Sun, H. Meng and Z. Wang, Energy Fuels, 2006, 20,
2083–2087.
23 L. Alonso, A. Arce, M. Francisco, O. Rodriguez and A. Soto, AIChE
Journal, 2007, 53, 3108–3115.
24 J. D. Holbrey, I. Lopez-Martin, G. Rothenberg, K. R. Seddon, G.
Silvero and X. Zheng, Green Chem., 2008, 10, 87–92.
25 N. H. Ko, J. S. Lee, E. S. Hub, H. Lee, K. D. Jung, H. S. Kim and M.
Cheong, Energy Fuels, 2008, 22, 1687–1690.
26 L. Lu, S. Cheng, J. Gao, G. Gao and M. Y. He, Energy Fuels, 2007,
21, 383–384.
27 W. Zhu, H. Li, X. Jiang, Y. Yan, J. Lu, L. He and J. Xia, Green Chem.,
2008, 10, 641–646.
28 W. Zhu, H. Li, X. Jiang, Y. Yan, J. Lu, L. He and J. Xia, Energy
Fuels, 2007, 21, 2514–2516.
29 W. H. Lo, H. Y. Yang ang and G. T. Wei, Green Chem., 2003, 5,
639–642.
30 D. Zhao, J. Wang and E. Zhou, Green Chem., 2007, 9, 1219–1222.
31 R. C. Morales, V. Tambyrajah, P. R. Jenkins, D. L. Davies and A. P.
Abbott, Chem. Commun., 2004, 158–159.
32 Z. Duan, Y. Gu and Y. Deng, Catalysis Communication, 2006, 7,
651–656.
33 S. P. Wicelinski, R. J. Gale, K. M. Pamidimukkala and R. A. Laine,
Analytical Chemistry., 1988, 60, 2228–2232.
34 D. Zhao, H. Ren, J. Wang, Y. Yang and Y. Zhao, Energy Fuels, 2007,
21, 2543–2547.
Acknowledgements
We are grateful for the financial support from the National
Natural Science Foundation of China (under No. 20806021 and
20576026) and the Scientific Research Project Item of Hebei
Province Educational Department (under No. 2007440).
35 S. Mallik, K. M. Parida and S. S. Dash, Journal of Molecular Catalysis
A: Chemical, 2007, 261, 172–179.
36 J. D. Holbrey, W. M. Reichert, M. Nieuwenhuyzen, O. Sheppard, C.
Hardacre and R. D. Rogers, Chem. Commun., 2003, 4, 476–477.
37 J. Herna´ndez-Maldonado, F. H. Yang, G. Qi and R. T. Yang, Appl.
Catal. B, 2005, 56, 111–126.
38 K. Yazu, Y. Yamamoto, T. Furuya, K. Miki and K. Ukegawa, Energy
Fuels, 2001, 15, 1535–1536.
39 S. Liu, C. Xie, S. Yu and F. Liu, Catalysis Communications., 2008, 9,
2030–2034.
References
1 J. M. Campos-Martin, M. C. Capel-Sanchez and J. L. G. Fierro,
Green Chem., 2004, 6, 557–562.
2 M. Houalla, D. Broderick, A. V. Sapre, N. K. Nag, V. H. J. de Beer,
B. C. Gates and H. Kwart, J. Catal., 1980, 61, 523–527.
3 J. G. Park, C. H. Ko, K. B. Yi, J. H. Park, S. S. Han, S. H. Cho and
J. N. Kim, Appl. Catal. B, 2008, 81, 244–250.
4 N. H. Ko, J. S. Lee, E. S. Huh, H. Lee, K. D. Jung, H. S. Kim and M.
Cheong, Energy Fuels, 2008, 22, 1687–1690.
5 X. Ma, A. Zhou and C. Song, Catalysis Today, 2007, 123, 276–284.
6 M. Soleimani, A. Bassi and A. Margaritis, Biotechnology Advances,
2007, 25, 570–596.
7 D. S. Zhao, F. T. Li, E. P. Zhou and Z. M. Sun, Chemical Research
in Chinese Universities, 2008, 24, 96–100.
8 Y. Shiraishi, T. Hirai and I. Komasawa, Ind. Eng. Chem. Res., 1998,
37, 203–211.
40 P. Bonhte, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram and
M. Grtzel, Inorg. Chem., 1996, 35(5), 1168–1178.
41 A. A. Fannin, D. A. Floreani, L. A. King, J. S. Landers, B. J. Piersma,
D. J. Stech, R. L. Vaughn, J. S. Wilkes and W. John, J. Phys. Chem.,
1984, 88(12), 2614–2621.
42 H. Xin, Q. Wu, M. Han, D. Wang and Y. Jin, Appl. Catal. A, 2005,
292, 354–361.
888 | Green Chem., 2009, 11, 883–888
This journal is
The Royal Society of Chemistry 2009
©