Page 13 of 15
1
Journal of the American Chemical Society
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
REFERENCES
(
(−)-Galanthamine. J. Am. Chem. Soc. 2000, 122, 11262−11263. (b)
Trost, B. M.; Thiel, O. R.; Tsui, H.-C. DYKAT of Baylis−Hillman Ad-
ducts:ꢀ Concise Total Synthesis of Furaquinocin E. J. Am. Chem. Soc.
(8) (a) Hofmann, N.; Ackermann, L. Meta-Selective C–H Bond Al-
kylation with Secondary Alkyl Halides. J. Am. Chem. Soc. 2013, 135,
877−5884. (b) Tobisu, M.; Chatani, N. Remote Control by Steric Ef-
1) (a) Trost, B. M.; Toste, F. D. Enantioselective Total Synthesis of
5
fects. Science 2014, 343, 850. (c) Kuninobu, Y.; Ida, H.; Nishi, M.;
Kanai, M. A meta-Selective C–H Borylation Directed by a Secondary
Interaction Between Ligand and Substrate. Nat. Chem. 2015, 7, 712. (d)
Wang, X.-C.; Gong, W.; Fang, L.-Z.; Zhu, R.-Y.; Li, S.; Engle, K. M.;
Yu, J.-Q. Ligand-Enabled meta-C–H Activation Using a Transient Me-
diator. Nature 2015, 519, 334. (e) Gemoets, H. P. L.; Laudadio, G.;
Verstraete, K.; Hessel, V.; Noël, T. A Modular Flow Design for the
meta-Selective C−H Arylation of Anilines. Angew. Chem. Int. Ed.
2
002, 124, 11616−11617. (c) Webber, P.; Krische, M. J. Concise Ste-
reocontrolled Formal Synthesis of (±)-Quinine and Total Synthesis of
(±)-7-Hydroxyquinine via Merged Morita-Baylis-Hillman-Tsuji-Trost
Cyclization. J. Org. Chem. 2008, 73, 9379−9387. (d) Bower, J. F.; Kim,
I. S.; Patman, R. L.; Krische, M. J. Catalytic Carbonyl Addition through
Transfer Hydrogenation: A Departure from Preformed Organometallic
Reagents. Angew. Chem. Int. Ed. 2008, 48, 34−46. (e) Ni, G.; Zhang,
Q.-J.; Zheng, Z.-F.; Chen, R.-Y.; Yu, D.-Q. 2-Arylbenzofuran Deriva-
tives from Morus cathayana. J. Nat. Prod. 2009, 72, 966−968. (f) Alam,
R.; Diner, C.; Jonker, S.; Szabó, K. J. Catalytic Asymmetric Allylbora-
tion of Indoles and Dihydroisoquinolines with Allylboronic Acids: Ste-
reodivergent Synthesis up to Three Contiguous Stereocenters. Angew.
Chem. Int. Ed. 2016, 55, 14417−14421. (g) Ketcham, J. M.; Volchkov,
I.; Chen, T.-Y.; Blumberg, P. M.; Kedei, N.; Lewin, N. E.; Krische, M.
J. Evaluation of Chromane-Based Bryostatin Analogues Prepared via
Hydrogen-Mediated C–C Bond Formation: Potency Does Not Confer
Bryostatin-Like Biology. J. Am. Chem. Soc. 2016, 138, 13415−13423.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
2
017, 56, 7161−7165.
9) (a) Leow, D.; Li, G.; Mei, T.-S.; Yu, J.-Q. Activation of Remote
meta-C–H Bonds Assisted by an End-on Template. Nature 2012, 486,
18. (b) Yang, Y. F.; Cheng, G. J.; Liu, P.; Leow, D.; Sun, T. Y.; Chen,
(
5
P.; Zhang, X.; Yu, J. Q.; Wu, Y. D.; Houk, K. N. Palladium-Catalyzed
meta-Selective C−H Bond Activation with a Nitrile-containing Tem-
plate: Computational Study on Mechanism and Origins of Selectivity.
J. Am. Chem. Soc. 2014, 136, 344−355. (c) Cheng, G. J.; Yang, Y. F.;
Liu, P.; Chen, P.; Sun, T. Y.; Li, G.; Zhang, X.; Houk, K. N.; Yu, J. Q.;
Wu, Y. D. Role of N-Acyl Amino Acid Ligands in Pd(II)-Catalyzed
Remote C−H Activation of Tethered Arenes. J. Am. Chem. Soc. 2014,
1
36, 894−897. (d) Bera, M.; Maji, A.; Sahoo, S. K.; Maiti, D. Palla-
(
h) Bailey, A. M.; Wolfrum, S.; Carreira, E. M. Biological Investiga-
dium(II)-Catalyzed meta-C–H Olefination: Constructing Multisubsti-
tuted Arenes through Homo-Diolefination and Sequential Hetero-Di-
olefination. Angew. Chem. Int. Ed. 2015, 54, 8515−8519. (e) Li, S.; Ji,
H.; Cai, L.; Li, G. Pd(II)-Catalyzed Remote Regiodivergent ortho- and
meta-C–H Functionalizations of Phenylethylamines. Chem. Sci. 2015,
tions of (+)‐Danicalipin A Enabled Through Synthesis. Angew. Chem.
Int. Ed. 2016, 55, 639−643.
(
2) (a) Martín Castro, A. M. Claisen Rearrangement over the Past
Nine Decades. Chem. Rev. 2004, 104, 2939−3002. (b) Maryasin,
B.; Kaldre, D.; Galaverna, R.; Klose, I.; Ruider, S.; Drescher, M.;
Kählig, H.; González, L.; Eberlin, M. N.; Jurberg, I. D.; Maulide, N.
Unusual Mechanisms in Claisen Rearrangements: An Ionic Fragmen-
tation Leading to a meta-Selective Rearrangement. Chem. Sci. 2018, 9,
6
, 5595−5600. (f) Dey, A.; Sinha, S. K.; Achar, T. K.; Maiti, D. Game
of Directors: Accessing Remote Meta- and Para-C–H Bonds With Co-
valently Attached Directing Groups. Angew. Chem. Int. Ed. 2019, 58,
1
0820–10843.
4
124−4131. (c) Lutz, R. P. Catalysis of the Cope and Claisen Rear-
rangements. Chem. Rev. 1984, 84, 205−247.
3) Cope, A. C.; Hardy, E. M. The Introduction of Substituted Vinyl
(10) Bag, S.; Patra, T.; Modak, A.; Deb, A.; Maity, S.; Dutta, U.;
Dey, A.; Kancherla, R.; Maji, A.; Hazra, A.; Bera, M.; Maiti, D. Re-
mote para-C–H Functionalization of Arenes by a D-Shaped Biphenyl
Template-Based Assembly. J. Am. Chem. Soc. 2015, 137,
(
Groups. V. A Rearrangement Involving the Migration of an Allyl
Group in a Three-Carbon System1. J. Am. Chem. Soc. 1940, 62,
1
1888−11891.
4
41−444.
4) (a) Rueping, M.; Nachtsheim, B. J. A Review of New Develop-
(11) Meta-selectivity is one of the major issues in the distal C–H
(
functionalization. If there is regio-switchable coupling partner (linear
vs. branched), it adds further selectivity issues. DG can lead to the meta-
ments in the Friedel–Crafts Alkylation: From Green Chemistry to
Asymmetric Catalysis. Beilstein J. Org. Chem. 2010, 6, 6. (b) Tao, Y.;
Wang, B.; Zhao, J.; Song, Y.; Qu, L.; Qu, J. Friedel–Crafts-Type Al-
(
major), ortho- and para- products formation. On the other hand, allyl
coupling partner can provide linear as well as branched product and, in
some cases, allyl can isomerize to olefin [Oi, S.; Tanaka, Y.; Inoue, Y.
Ortho-Selective Allylation of 2-Pyridylarenes with Allyl Acetates Cat-
alyzed by Ruthenium Complexes. Organometallics 2006, 25,
lylation of Nitrogen-Containing Aromatic Compounds with Allylic Al-
3
cohols Catalyzed by a [Mo
7, 2942−2946.
5) (a) Tsuji, J. Carbon-Carbon Bond Formation via Palladium Com-
3 4
S Pd(η -allyl)] Cluster. J. Org. Chem. 2012,
7
(
4
773−4778]. Additionally, all regioisomers of allyl coupling partner
plexes. Acc.Chem. Res. 1969, 2, 144−152. (b) Trost, B. M.; Van
Vranken, D. L. Asymmetric Transition Metal-Catalyzed Allylic Alkyl-
ations. Chem. Rev. 1996, 96, 395−422.
can be present individually at meta-, ortho- and para- positions. There-
fore, it is indeed a great challenge to achieve one product exclusively.
(12) Use of terminal olefin produces mixture of compounds includ-
ing branched olefination, linear olefination, allylatation; whereas inter-
nal aliphatic olefin leads to tertiary carbon containing allylation prod-
uct: Achar, T. K.; Zhang, X.; Mondal, R.; Shanavas, M. S.; Maiti, S.;
Maity, S.; Pal, N.; Paton, R. S.; Maiti, D. Palladium-Catalyzed Directed
meta-Selective C−H Allylation of Arenes: Unactivated Internal Olefins
as Allyl Surrogates. Angew. Chem. Int. Ed. 2019, 58, 10353–10360.
(
6) (a) Zhang, Y. J.; Skucas, E.; Krische, M. J. Direct Prenylation of
Aromatic and α,β-Unsaturated Carboxamides via Iridium-Catalyzed
C−H Oxidative Addition−Allene Insertion. Org. Lett. 2009, 11,
4248−4250. (b) Asako, S.; Ilies, L.; Nakamura, E. Iron-Catalyzed Or-
tho-Allylation of Aromatic Carboxamides with Allyl Ethers. J. Am.
Chem. Soc. 2013, 135, 17755−17757. (c) Ye, B.; Cramer, N. A Tunable
Class of Chiral Cp Ligands for Enantioselective Rhodium(III)-
Catalyzed C–H Allylations of Benzamides. J. Am. Chem. Soc. 2013,
135, 636-639. (d) Wang, H.; Schröder, N.; Glorius, F. Mild Rho-
dium(III)-Catalyzed Direct C–H Allylation of Arenes with Allyl Car-
bonates. Angew. Chem. Int. Ed. 2013, 52, 5386−5389. (e) Mishra, N.
K.; Sharma, S.; Park, J.; Han, S.; Kim, I. S. Recent Advances in Cata-
(
(
13) See the Supporting Information for detailed descriptions.
14) Chu, L.; Shang, M.; Tanaka, K.; Chen, Q.; Pissarnitski, N.;
Streckfuss, E.; Yu, J.-Q. Remote Meta-C–H Activation Using a Pyri-
dine-Based Template: Achieving Site-Selectivity via the Recognition
of Distance and Geometry. ACS Cent. Sci. 2015, 1, 394−399.
(
15) (a) Bag, S.; Petzold, M.; Sur, A.; Bhowmick, S.; Werz, D. B.;
2
lytic C(sp )–H Allylation Reactions. ACS Catal. 2017, 7, 2821–2847.
Maiti, D. Palladium-Catalyzed Selective meta-C−H Deuteration of
Arenes: Reaction Design and Applications. Chem. Eur. J. 2019, 25,
9
S.; Paton, R. S.; Maiti, D. Alkyne Linchpin Strategy for Drug:Pharma-
cophore Conjugation: Experimental and Computational Realization of
a Meta-Selective Inverse Sonogashira Coupling. J. Am. Chem. Soc.
(7) (a) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y.
Transition Metal-Catalyzed C–H Bond Functionalizations by the Use
of Diverse Directing Groups. Org. Chem. Front. 2015, 2, 1107−1295.
433–9437. (b) Porey, S.; Zhang, X.; Bhowmick, S.; Singh, V.; Guin,
(
b) Rouquet, G.; Chatani, N. Catalytic Functionalization of C(sp2)-H
and C(sp3)-H Bonds by Using Bidentate Directing Groups. Angew.
Chem. Int. Ed. 2013, 52, 11726−11743.
2
020, 142, 3762−3774.
1
3
ACS Paragon Plus Environment