H. Zheng et al. / Tetrahedron Letters 50 (2009) 1588–1592
1591
Thus, the dyad 1 can read a string of three inputs and write a
unique fluorescence output. For example, when the input string
is 100, corresponding to the I1, I2 and I3 are on, off, off, respec-
tively. Under these conditions, the dyad 1 is in state 3 and the fluo-
rescence of the Rhodamine unit is quenched. Hence, the output
signal is off. If the I1, I2 and I3 are all off, the input string is 000.
Under these conditions, the dyad 1 is in state 2 and the relative
intensity of the fluorescence is 100%. Thus, the output signal O1
is on and the output digit is 1. All the possible strings of the three
inputs are listed in Table 1 and the combinational logic circuits
equivalent to the truth table is illustrated in Figure 4.
In conclusion, a novel dyad 1 with proton-sensitive and photo-
chromic components has been synthesized and characterized. The
emission intensity of the dyad 1 can be regulated by chemical and
optical stimuli. Based on the fact, an integrated digital circuit with
three external input signals and one fluorescence output signal
was constructed and the information transmission at the single
molecular level was realized.
Figure 4. The combinational logic circuits equivalent to the truth table gave in
Table 1.
Table 1
Truth table for all possible strings of three binary-input data and the corresponding
output digit (combinational logic circuits corresponding to the truth table is given in
Fig. 4)
Acknowledgments
Input
Outputa
This work was supported by the National Nature Science Foun-
dation of China (20831160507 and 20721061) and the National Ba-
sic Research 973 Program of China.
I1 (UV)
I2 (vis)
I3 (TEA)
kem = 581 (nm)
0
1
0
0
1
1
0
1
0
0
1
0
1
0
1
1
0
0
0
1
0
1
1
1
1
0
1
0
1
0
0
0
Supplementary data
Supplementary data associated with this article can be found, in
a
At 581 nm, the emission intensity below 40% of the original value is defined as
0, otherwise defined as 1.
References and notes
1. de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C.
P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515.
2. Zhang, M.; Yu, M.; Li, F.; Zhu, M.; Li, M.; Gao, Y.; Li, L.; Liu, Z.; Zhang, J.; Zhang,
D.; Yi, T.; Huang, C. J. Am. Chem. Soc. 2007, 129, 10322.
3. Zapata, F.; Caballero, A.; Espinosa, A.; Trraga, A.; Molina, P. Org. Lett. 2008, 10,
41.
4. Feringa, B. L. Molecular Switches; Wiley-VCH Express: New York, 2001. pp 37–
62.
5. Shiraishi, Y.; Tokitoh, Y.; Nishimura, G.; Hirai, T. Org. Lett. 2005, 7, 2611.
6. Zhang, G.; Zhang, D.; Guo, X.; Zhu, D. Org. Lett. 2004, 6, 1209.
7. Jiang, G.; Wang, S.; Yuan, W.; Jiang, L.; Song, Y.; Tian, H.; Zhu, D. Chem. Mater.
2006, 18, 235.
dashed line) due to the closed form formation of the diarylethene
moiety. Upon irradiation with visible light, 1C switched back to
1O almost completely, the emission intensity returned to the origi-
nal value (Fig. 3 dotted line). This fluorescence quenching maybe
due to the intramolecular energy transfer from the excited Rhoda-
mine unit to the closed diarylethene moiety because the spectral
overlap between the emission band of the Rhodamine unit and
the enhanced absorption band of the closed diarylethene moiety
in dyad 1 (see Supplementary data).26–28 In addition, this emission
change was not observed when mixing the compound 3 and 5 (mo-
lar ratio of 1:2) in acidic condition in CH3CN upon ultraviolet light
irradiation (see Supplementary data), so the trivial or radiative en-
ergy transfer can be ignored. It is obvious that the modulation of
the emission intensity of the Rhodamine unit by alternate ultravi-
olet and visible light is fully reversible and it can be cycled in sev-
eral times (inset of Fig. 3).
8. Liu, Y.; Jiang, W.; Zhang, H.-Y.; Li, C.-J. J. Phys. Chem. B 2006, 110, 14231.
9. Raymo, F. M. Adv. Mater. 2002, 14, 401.
10. de Silva, A. P.; McClenaghan, N. D. Chem. Eur. J. 2004, 10, 574.
11. Qu, D.-H.; Ji, F.-Y.; Wang, Q.-C.; Tian, H. Adv. Mater. 2006, 18, 2035.
12. Irie, M.; Fukaminato, T.; Sasaki, T.; Tamai, N.; Kawai, T. Nature 2002, 420, 759.
13. Giordano, L.; Jovin, T. M.; Irie, M.; Jares-Erijman, E. A. J. Am. Chem. Soc. 2002,
124, 7481.
14. Fukaminato, T.; Sasaki, T.; Kawai, T.; Tamai, N.; Irie, M. J. Am. Chem. Soc. 2004,
126, 14843.
15. Norsten, T. B.; Branda, N. R. J. Am. Chem. Soc. 2001, 123, 1784.
16. Tian, H.; Qin, B.; Yao, R.; Zhao, X.; Yang, S. Adv. Mater. 2003, 15, 2104.
17. Tian, H.; Chen, B.; Tu, H.; Müllen, K. Adv. Mater. 2002, 14, 918.
18. Hurenkamp, J. H.; de Jong, J. J. D.; Browne, W. R.; van Esch, J. H.; Feringa, B. L.
Org. Biomol. Chem. 2008, 6, 1268.
19. Guo, X.; Zhang, D.; Zhu, D. Adv. Mater. 2004, 16, 125.
20. Margulies, D.; Felder, C. E.; Melman, G.; Shanzer, A. J. Am. Chem. Soc. 2007, 129,
347.
As shown above, the emission intensity of the Rhodamine could
be modulated by the chemical and light stimuli independently. The
dual-mode fluorescence switching principle of dyad 1 is summa-
rized in Scheme 2.
The dependence of the fluorescence of dyad 1 on the external
stimuli: ultraviolet, visible light, and chemical signals can be de-
scribed with the aid of binary logic.34–36 The dyad 1 in acidic con-
dition which exhibited strong fluorescence was regarded as the
initial state. The three inputs signals are I1 (ultraviolet light), I2
(visible light), and I3 (TEA). The output signal is O1 (the emission
band at 581 nm). The input signals I1, I2 and I3 can be either off
or on. Similarly, the output signal can be considered off when the
relative emission intensity at 581 nm is below 40% of the original
value and on when it is 100%. The binary digits (0 or 1) can be ex-
plored to represent the two levels (off and on).
21. Irie, M. Chem. Rev. 2000, 100, 1685.
22. Yang, H.; Zhou, Z.; Huang, K.; Yu, M.; Li, F.; Yi, T.; Huang, C. Org. Lett. 2007, 9,
4729.
23. Dujols, V.; Ford, F.; Czarnik, A. W. J. Am. Chem. Soc. 1997, 119, 7386.
24. Kwon, J. Y.; Jang, Y. J.; Lee, Y. J.; Kim, K. M.; Seo, M. S.; Nam, W.; Yoon, J. J. Am.
Chem. Soc. 2005, 127, 10107.
25. Xiang, Y.; Tong, A. Org. Lett. 2006, 8, 1549.
26. Lim, S.-J.; Seo, J.; Park, S. Y. J. Am. Chem. Soc. 2006, 128, 14542.
27. Bossi, M.; Belov, V.; Polyakova, S.; Hell, S. W. Angew. Chem., Int. Ed. 2006, 45,
7462.
28. Fölling, J.; Polyakova, S.; Belov, V.; van Blaaderen, A.; Bossi, M. L.; Hell, S. W.
Small 2008, 4, 134.
29. Lucas, L. N.; de Jong, J. J. D.; van Esch, J. H.; Kellogg, R. M.; Feringa, B. L. Eur. J.
Org. Chem. 2003, 155.