J. Llorca et al. / Journal of Catalysis 258 (2008) 187–198
197
supported on anatase and calcined at 673 K. These alloy nanoparti-
cles, with diameters of about 5–6 nm, are considerably more active
and selective towards the epoxidation of propene by N2O than
their monometallic counterparts, Au/TiO2 and Cu/TiO2, which may
be ascribed to site isolation effects caused by alloying. For sam-
ples calcined at lower temperature the interaction between alloy
nanoparticles and TiO2 is weak and low propene oxide TOF values
are obtained, suggesting that the complex synergy created at the
perimeter interface around Au–Cu alloy nanoparticles appears es-
sential for epoxidation capability. However, at calcination tempera-
tures higher than 673 K, alloy nanoparticles are progressively dec-
orated with oxidized Cu species and the catalytic performance to-
wards propene oxide decreases, in spite of strong particle–support
interaction. This decoration effect is more pronounced with de-
creasing alloy particle size from ca. 5 to 2 nm, and allylic oxidation
products are preferably obtained.
Acknowledgments
This work was supported by MEC grants ENE2006-06925 (J.Ll.),
CTQ2006-08196 (O.R.), and CTQ2006-02362 (F.M.).
References
[1] G.C. Bond, C. Louis, D. Thompson, Catalysis by Gold, Imperial College Press,
London, 2006.
[
[
[
[
[
[
2] M. Haruta, Gold Bull. 37 (2004) 27.
3] M. Haruta, Chem. Rec. 3 (2003) 75.
4] M. Haruta, CATTECH 6 (2002) 102.
5] G.C. Bond, D.T. Thompson, Appl. Catal. A Gen. 302 (2006) 1.
6] D.T. Thompson, Top. Catal. 38 (2006) 231.
7] T.A. Nijhuis, M. Makkee, J.A. Moulijn, B.M. Weckhuysen, Ind. Eng. Chem. Res. 45
(2006) 3447.
Fig. 17. Effect of calcination temperature on the structure of Au–Cu alloy nanopar-
ticles in catalyst Au1Cu3/TiO2 (1.2%). Initially, Au–Cu alloy nanoparticles are capped
with an organic envelop. After deposition on TiO2 and calcination at 573 K the or-
ganic envelop is removed but the Au–Cu alloy structure is preserved. At 673 K the
size of nanoparticles increases and a strong interaction between nanoparticles and
TiO2 occurs. At 773 K there is a slight enrichment of Cu on the surface, which is
more pronounced at 873 K. At this temperature the size of nanoparticles increases
strongly.
[8] M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, J. Catal. 115 (1989) 301.
[9] T. Hayashi, K. Tanaka, M. Haruta, J. Catal. 178 (1998) 566.
[10] Y.A. Kalvachev, T. Hayashi, S. Tsubota, M. Haruta, J. Catal. 186 (1999) 228.
[11] E.E. Stangland, K.B. Stavens, R.P. Andres, W.N. Delgass, J. Catal. 191 (2000) 332.
[12] J. Chou, E.W. McFarland, Chem. Commun. (2004) 1648.
[13] E. Sacaliuc, A.M. Beale, B.M. Weckhuysen, T.A. Nijhuis, J. Catal. 248 (2007) 235.
[14] A.K. Sinha, S. Seelan, M. Okumura, T. Akita, S. Tsubota, M. Haruta, J. Phys. Chem.
B 109 (2005) 3956.
[15] B. Chowdhury, J.J. Bravo-Sárez, M. Daté, S. Tsubota, M. Haruta, Angew. Chem.
Int. Ed. 45 (2006) 412.
16] J. Lu, X. Zhang, J.J. Bravo-Suárez, K.K. Bando, T. Fujitani, S.T. Oyama, J. Catal. 250
(2007) 350.
(1%), Au1Cu3/TiO2 (0.8%), and Au1Cu3/TiO2 (0.5%). These samples
[
had the same bulk Au/Cu ratio but differed in their particle size
and surface Au/Cu values, as determined by HRTEM and XPS (Sec-
tion 3.1.2). Catalyst Au1Cu3/TiO2 (1%) exhibited a similar trend than
that of Au1Cu3/TiO2 (1.2%) discussed above, and the sample cal-
cined at 673 K was again the most active for propene epoxidation.
However, propene oxide TOF values were about 40% lower than
those of Au1Cu3/TiO2 (1.2%) catalyst (Fig. 16). Taking into account
the fact that samples Au1Cu3/TiO2 (0.8% ) and Au1Cu3/TiO2 (0.5%)
exhibited even lower activity for propene oxide formation and that
surface Au/Cu values progressively decreased as the metal loading
of the samples decreased (Table 3), we conclude that decoration
of the alloy nanoparticles with copper species is responsible for
the low catalytic performance in propene epoxidation of these
Au1Cu3/TiO2 catalysts with low metal loading. It is possible that
surface copper enrichment may be related to a nanoparticle size,
since the alloy nanoparticles became smaller as the metal loading
decreased. In fact, as the metal loading decreased and the surface
was progressively enriched in Cu, the selectivity towards acrolein
increased strongly at the expense of propene oxide (Table 6) and
it has been reported that copper oxide is particularly active for the
oxidation of propene to acrolein [32].
[17] C. Sivadinarayana, T.V. Chouhary, L.L. Daemen, J. Eckert, D.W. Goodman, J. Am.
Chem. Soc. 126 (2004) 38.
[
18] M. Haruta, B.S. Uphade, S. Tsubota, A. Miyamoto, Res. Chem. Intermed. 24
1998) 329.
19] M. Haruta, M. Daté, Appl. Catal. A Gen. 222 (2001) 427.
(
[
[20] A.K. Sinha, S. Seelan, S. Tsubota, M. Haruta, Angew. Chem. Int. Ed. 43 (2004)
1546.
[21] V. Duma, D. Hönicke, J. Catal. 191 (2000) 93.
[
[
[
22] E. Ananieva, A. Reitzmann, Chem. Eng. Sci. 59 (2004) 5509.
23] X. Wang, Q. Zhang, S. Yang, Y. Wang, J. Phys. Chem. B 109 (2005) 23500.
24] Q. Zhang, Q. Guo, X. Wang, T. Shishido, Y. Wang, J. Catal. 239 (2006) 105.
[25] A. Costine, T. O’Sullivan, B.K. Hodnett, Catal. Today 112 (2006) 103.
26] Y. Wang, W. Yang, L. Yang, X. Wang, Q. Zhang, Catal. Today 117 (2006) 156.
[
[27] T. Thömmes, S. Zürcher, A. Wix, A. Reitzmann, B. Kraushaar-Czarnetzki, Appl.
Catal. A Gen. 318 (2007) 160.
[28] B. Moens, H.D. Winne, S. Corthals, H. Poelman, R. De Gryse, V. Meynen, P. Cool,
B.F. Sels, P.A. Jacobs, J. Catal. 247 (2007) 86.
[29] S. Yang, W. Zhu, Q. Zhang, Y. Wang, J. Catal. 54 (2008) 251.
[30] R.M. Lambert, F.J. Williams, R.L. Cropley, A. Palermo, J. Mol. Catal. A Chem. 228
(
2005) 27.
31] D. Torres, N. Lopez, F. Illas, R.M. Lambert, Angew. Chem. Int. Ed. 46 (2007)
055.
[
2
[32] J. Lu, M. Luo, H. Lei, X. Bao, C. Li, J. Catal. 211 (2002) 552.
[33] O.P.H. Vaughan, G. Kyriakou, N. Macleod, M. Yikhov, R.M. Lambert, J. Catal. 236
(2005) 401.
[34] H. Chu, L. Yang, Q. Zhang, Y. Wang, J. Catal. 241 (2006) 225.
[35] Y. Wang, H. Chu, W. Zhu, Q. Zhang, Catal. Today 131 (2008) 496.
[36] R.J. Chimentao, F. Medina, J.L.G. Fierro, J. Llorca, J.E. Sueiras, Y. Cesteros, P. Sala-
gre, J. Mol. Catal. A Chem. 274 (2007) 159.
4
. Conclusions
High yields of propene oxide can be formed through Au–Cu–
Ti intimate contacting from well-defined Au–Cu alloy nanoparticles
[37] Q. Fu, H. Saltsburg, M. Flytzani-Stephanopoulos, Science 301 (2003) 935.