Table 1 Specific activities of (3RS,7R,11R)-phytanoyl-CoA hydroxylation as catalysed by mature recombinant wild-type and mutant PAHX enzymes in the
presence of various 2-oxoacids (nmol min2 mg protein). Assays were carried out with 2 mM or 60 mM 2-oxoacid
1
21
PAHX mutant
R275 (wild-type)
2
R275A
2
R275Q
2
R275W
2
2-oxoacid/mM
60
60
60
60
1
. 2-oxoglutarate
2
R = (CH
) CO
2 2 2
265
129
885
235
2.63
3.14
8.7
128
0.59
< 0.2
< 0.2
54.0
106
< 0.2
< 0.2
< 0.2
11.0
55.2
63.9
17.0
66.2
56.2
98.2
< 0.2
2
. 2-oxoadipate
2
R = (CH
2 3
) CO
2
57.0
< 0.2
< 0.2
0.6
3
. pyruvate
R = CH
. 2-oxobutyrate
R = CH CH
. 2-oxovalerate
R = (CH CH
. 2-oxoisovalerate
R = CH(CH
. 2-oxocaproate
R = (CH CH
. 2-oxoisocaproate
R = CH CH(CH
. 2-oxo-5-thiahexanoate
R = (CH SCH
0. 2-oxooctanoic acid
R = (CH CH
3
6.8
78.6
201
250
210
192
235
217
226
< 0.2
< 0.2
2.7
4
2
3
2.1
1.6
69.4
40.1
45.3
20.1
17.8
< 0.2
< 0.2
5.7
0.9
5
)
2 2
3
4.8
3.0
71.6
72.2
42.4
45.4
52.8
< 0.2
1.93
0.49
2.4
6
)
3 2
0.65
0.7
4.30
5.3
1.52
1.33
1.9
7
)
2 3
3
8
2
3
)
2
0.8
4.8
2.2
9
)
2 2
3
< 0.2
N/D
4.8
1.6
2.6
1
)
2 5
3
N/D
N/D
N/D
be accommodated in the proper orientation in the active site.
The R275A mutant was also less selective than the wild-type or
other tested mutants, presumably due to a relaxation of steric
and electrostatic constraints reflecting the presence of a small,
hydrophobic and neutral side-chain.
kinases.15 The in vitro work that is reported here is the first
demonstration of the ‘chemical co-substrate rescue’ of muta-
tions in an enzyme (Scheme 2) implicated in a human disease.
In vivo studies directed towards demonstrating the technique in
cell lines are in progress.
2-Oxoacids are metabolically related to proteinogenic amino
acids via transamination reactions. Several of the 2-oxoacids
which rescue the activity of the clinically observed R275W and
R275Q mutants are thus accessible via in vivo amino acids, e.g.
Notes and references
2-oxovalerate from valine and 2-oxo-5-thiahexanoate from
1
D. Steinberg, in ‘Refsum Disease’, The metabolic and molecular basis
of inherited metabolic disease, ed. C. R. Scriver, A. L. Beaudet, W. S.
Sly and D. Valle, New York, 1995.
methionine. Thus, certain forms of ARD might be treated via
dietary supplements containing the appropriate amino acids.
Maple syrup urine disease is caused by a deleterious accumula-
tion of excess 2-oxacids, and is treated, in the reverse of this
2 N. M. Verhoeven, R. J. A. Wanders, B. T. Poll-The, J. M. Saudbubray
and C. Jakobs, J. Inherit. Metab. Dis., 1998, 21, 697.
3
4
S. J. Mihalik, J. C. Morrell, D. Kim, K. A. Stackster, P. A. Watkins and
S. J. Gould, Nat. Genet., 1997, 17, 185.
G. A. Jansen, R. Ofman, S. Ferdinandusse, L. IIjlst, A. O. Muisers, O. H.
Skjeldal, O. Stokke, C. Jakobs, G. T. N. Besley, J. E. Wraith and R. J. A.
Wanders, Nature Genet., 1997, 17, 190.
proposed therapy, by a diet low in branched-chain amino
acids.13 Restoration of complete wild-type activity may not be
required, as 5% of wild-type activity is apparently sufficient to
effectively correct inherited homocystinuria14 with vitamin
B6.
To our knowledge the only other example of the rescue of
enzyme activity with a modified co-substrate has involved the
elegant use of ATP analogues to study in vivo activity of
5
6
A. G. Prescott and M. D. Lloyd, Nat. Prod. Rep., 2000, 17, 367.
A. S. Wierzbicki, J. Mitchell, M. Lambert-Hammill, M. Hancock, J.
Greenwood, M. C. Sidey, J. de Belleroche and F. B. Gibberd, Eur. J.
Hum. Genet., 2000, 8, 649.
7
8
9
G. A. Jansen, E. M. Hogenhout, S. Ferdinandusse, H. R. Waterham, R.
Ofman, C. Jakobs, O. H. Skjeldal and R. J. A. Wanders, Hum. Mol.
Gen., 2000, 9, 1195.
K. Valegård, A. C. Terwisscha van Scheltinga, M. D. Lloyd, T. Hara, S.
Ramaswamy, A. Perrakis, A. Thompson, H.-J. Lee, J. E. Baldwin, C. J.
Schofield, J. Hajdu and I. Andersson, Nature, 1998, 394, 805.
Z.-H. Zhang, J. Ren, J. K. Stammers, J. E. Baldwin, K. Harlos and C. J.
Schofield, Nat. Struct. Biol., 2000, 7, 127.
1
1
1
1
0 M. Mukherji, N. J. Kershaw, I. J. Clifton, C. J. Schofield, A. S.
Wierzbicki and M. D. Lloyd, manuscript in preparation.
1 S. J. Mihalik, A. M. Rainville and P. A. Watkins, Eur. J. Biochem.,
1
995, 232, 545.
2 K. Croes, V. Foulon, M. Casteels, P. P. Van Veldhoven and G. P.
Mannaerts, J. Lipid Res., 2000, 41, 629.
3 S. E. Snyderman, P. M. Norton, E. Roitman and L. Holt, Pediatrics,
1964, 34, 454.
Scheme 2 ‘Chemical co-substrate rescue’ of a PAHX mutant as exemplified
for R275W. R = hydrophobic/aliphatic group. Wild-type enzyme showing
interaction of guanidino group of Arg-275 and 5-carboxylate of 2-oxo-
glutarate (above). Unfavourable interaction between aromatic sidechain of
Trp-275 and 5-carboxylate of 2-oxoglutarate; rescue of activity via
hydrophobic interactions in 2-oxoacid binding site (below). The relative
arrangement of the iron ligands is that of deacetoxycephalosporin C
14 J. P. Kraus, M. Janosik, V. Kozich, R. Mandall, V. Shih, M. P.
Sperandeo, G. Sebastio, R. de Franchis, G. Andria, L. A. Kluijtmans, H.
Blom, G. H. Boers, R. B. Gordon, P. Kamoun, M. Y. Tsai, W. D.
Kruger, H. G. Koch, T. Ohura and M. Gaustadnes, Hum. Mut., 1999, 13,
362.
15 Y. Liu, K. Shah, F. Yang, L. Witucki and K. M. Shokat, Chem. Biol.,
1998, 5, 91.
8
synthase (DAOCS).
Chem. Commun., 2001, 972–973
973