Journal of the American Chemical Society
Communication
is based on a unimolecular biomimetic device that can interact
with both the active site and the protein’s surface. A limitation of
this prototype is the lower catalytic activity of the artificial
esterase when compared with that of natural enzymes, requiring
higher concentrations of 1 and GST in channel 2.
REFERENCES
■
(1) Bjerre, J.; Rousseau, C.; Marinescu, L.; Bols, M. Appl. Microbiol.
Biotechnol. 2008, 81, 1. Kirby, A. J.; Hollfelder, F. From Enzyme Models to
Model Enzymes; RSC: Cambridge, 2009. Raynal, M.; Ballester, P.; Vidal-
Ferran, A.; van Leeuwen, P. W. N. M. Chem. Soc. Rev. 2014, 43, 1734.
Breslow, R. Acc. Chem. Res. 1995, 28, 146. Breslow, R. J. Biol. Chem.
2009, 284, 1337. Kofoed, J.; Reymond, J.-L. Curr. Opin. Chem. Biol.
2005, 9, 656. Breslow, R.; Dong, S. D. Chem. Rev. 1998, 98, 1997.
(2) Vial, L.; Dumy, P. New J. Chem. 2009, 33, 939.
The discriminatory ability of the system was further tested by
using it to differentiate among isozymes in human urine. GST P1
and GST A1 were selected as the analytes for this study because
elevated concentrations of these isozymes in urine have been
detected in kidney-related diseases.18,19 These urinary bio-
markers exhibit very similar activities, and hence, conventional
enzymatic assays, which can be used to diagnose high levels of
these isozymes, cannot determine their identity (Figure S7). In a
proof-of-principle experiment, human urine spiked with different
concentrations of GSTs, including medicinally relevant concen-
trations (0.4−0.8 μg/mL),18 was analyzed by our system. To
eliminate background reaction by urine esterases, the GST
content of each sample was enriched by a GSH column prior to
testing in channel 2 (SI). A LDA plot (Figure 7b) showed a clear
differentiation of different combinations and concentrations of
these isozymes, which enabled detection of 26 of 27 unknown
samples with 96% accuracy.
In conclusion, a novel enzyme mimic that integrates a catalytic
site and a protein recognition domain was created and used to
discriminate among structurally similar isozymes. In addition to
demonstrating a biomimetic approach to differential protein
sensing, this study highlights an important principle that could be
applied in future artificial enzyme design. The ability of 1 to be
engaged in enzyme−artificial enzyme interactions shows that
although enzyme mimics cannot yet compete with the catalytic
turnovers of natural enzymes, in terms of biomolecular
interactions, they can exhibit nanomolar binding affinities
comparable to those of natural proteins. Hence, beyond
modeling enzyme active sites, artificial enzymes of this class
could help to elucidate the parameters needed to couple protein
recognition with catalysis, a fundamental principle underlying the
function of signaling allosteric enzymes such as ELRs.
Considering the simplicity by which synthetic protein binders
can be attached to current artificial enzymes, we believe that
various other ELR mimics could be designed and contribute to
the development of stimuli-responsive biomimetics, biosensors,
and allosteric catalysts.
(3) Kovbasyuk, L.; Kramer, R. Chem. Rev. 2004, 104, 3161. Zhu, L.;
̈
Anslyn, E. V. Angew. Chem., Int. Ed. 2006, 45, 1190. Wiester, M. J.;
Ulmann, P. A.; Mirkin, C. A. Angew. Chem., Int. Ed. 2011, 50, 114.
(4) Oshovsky, G. V.; Reinhoudt, D. N.; Verboom, W. Angew. Chem.,
Int. Ed. 2007, 46, 2366.
(5) Breslow, R. Advances in Enzymology and Related Areas of Molecular
Biology; Wiley: New York, 2006; p 1.
(6) Alberts, B.; Johnson, A.; Lewis, J. Molecular Biology of the Cell;
Garland: New York, 2002.
(7) Lemmon, M. A.; Schlessinger, J. Cell 2010, 141, 1117.
(8) Motiei, L.; Pode, Z.; Koganitsky, A.; Margulies, D. Angew. Chem.,
Int. Ed. 2014, 53, 9289.
(9) Wright, A. T.; Griffin, M. J.; Zhong, Z.; McCleskey, S. C.; Anslyn, E.
V.; McDevitt, J. T. Angew. Chem., Int. Ed. 2005, 44, 6375. Zamora-
Olivares, D.; Kaoud, T. S.; Dalby, K. N.; Anslyn, E. V. J. Am. Chem. Soc.
2013, 135, 14814. Miranda, O. R.; Chen, H.-T.; You, C.-C.; Mortenson,
D. E.; Yang, X.-C.; Bunz, U. H. F.; Rotello, V. M. J. Am. Chem. Soc. 2010,
132, 5285. De, M.; Rana, S.; Akpinar, H.; Miranda, O. R.; Arvizo, R. R.;
Bunz, U. H. F.; Rotello, V. M. Nat. Chem. 2009, 1, 461. Margulies, D.;
Hamilton, A. D. Angew. Chem., Int. Ed. 2009, 48, 1771. Margulies, D.;
Hamilton, A. D. Curr. Opin. Chem. Biol. 2010, 14, 705.
(10) Collins, B.; Wright, A.; Anslyn, E. In Creative Chemical Sensor
Systems; Schrader, T., Ed.; Springer: Berlin, 2007; Vol. 277, p 181.
(11) Sieber, S. A. Activity-Based Protein Profiling; Springer: Heidelberg,
2012. Li, N.; Overkleeft, H. S.; Florea, B. I. Curr. Opin. Chem. Biol. 2012,
16, 227. Schmidinger, H.; Hermetter, A.; Birner-Gruenberger, R. Amino
Acids 2006, 30, 333. Sanman, L. E.; Bogyo, M. Annu. Rev. Biochem. 2014,
83, 249. Barglow, K. T.; Cravatt, B. F. Nat. Methods 2007, 4, 822.
Willems, L. I.; Overkleeft, H. S.; van Kasteren, S. I. Bioconjugate Chem.
2014, 25, 1181. Reymond, J.-L.; Wahler, D. ChemBioChem 2002, 3, 701.
Reymond, J.-L.; Fluxa, V. S.; Maillard, N. Chem. Commun. 2008, 46.
(12) Mannervik, B.; Alin, P.; Guthenberg, C.; Jensson, H.; Tahir, M. K.;
Warholm, M.; Jornvall, H. Proc. Natl. Acad. Sci. U.S.A. 1985, 82, 7202.
̈
(13) Koike, T.; Kajitani, S.; Nakamura, I.; Kimura, E.; Shiro, M. J. Am.
Chem. Soc. 1995, 117, 1210.
(14) Subat, M.; Woinaroschy, K.; Anthofer, S.; Malterer, B.; Konig, B.
Inorg. Chem. 2007, 46, 4336.
̈
(15) Mahajan, S. S.; Hou, L.; Doneanu, C.; Paranji, R.; Maeda, D.;
Zebala, J.; Atkins, W. M. J. Am. Chem. Soc. 2006, 128, 8615.
(16) Eklund, B. I.; Moberg, M.; Bergquist, J.; Mannervik, B. Mol.
Pharmacol. 2006, 70, 747.
(17) Gasser, G.; Ott, I.; Metzler-Nolte, N. J. Med. Chem. 2010, 54, 3.
(18) Sundberg, A.; Appelkvist, E. L.; Dallner, G.; Nilsson, R. Environ.
Health. Perspect. 1994, 102, 293.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental procedures and kinetic experiments. This material
(19) Cawood, T. J.; Bashir, M.; Brady, J.; Murray, B.; Murray, P. T.;
O’Shea, D. Am. J. Nephrol. 2010, 32, 219. Westhuyzen, J.; Endre, Z. H.;
Reece, G.; Reith, D. M.; Saltissi, D.; Morgan, T. J. Nephrol. Dial.
Transplant. 2003, 18, 543.
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This research was supported by the Minerva Foundation, the
International HFSP Organization, and a European Research
Council Starting Grant. Postdoctoral fellowship of Dr.
Selvakumar was partly funded by the Council for Higher
Education of Israeli Government under VATAT program.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX