Please do not adjust margins
ChemComm
Page 3 of 5
DOI: 10.1039/C7CC01729D
Journal Name
Thermal gravimetric analysis (TGA) of Me8TD[4] was
COMMUNICATION
This work was financially supported by the Science Fund
carried out in nitrogen atmosphere to 600
℃
thermal stability. We did not detect mass loss related to the (21572063, 21372076), and the Program of Introducing Talents
to evaluate their for Creative Research Groups (21421004), NSFC/China
decomposition of Me8TD[4] or its calcium complex up to 490 of Discipline to Universities (B16017).
℃ (Table 2 & Fig. S5), indicating that the macrocycle possesses
excellent thermal stability which is comparable with
[20]
Notes and references
cucurbiturils (exceed 370
℃
)
.
The relatively good solubility of free Me8TD[4] allows us
to investigate the host-guest chemistry of Me8TD[4] with
metal ions in neutral water. Log K, ∆G, ∆H, and T∆S values for
the interactions of the metal ions with Me8TD[4] in H2O are
listed in table 3. Those metal ions with small
radius―Li+(0.59Å), Mg2+(0.72Å), Co2+(0.75Å), Cu2+(0.73Å) and
Zn2+(0.75Å)[5b]―show no measurable heat during the titration
1
W. A. Freeman, W. L. Mock and N. Y. Shih, J. Am. Chem. Soc.
1981, 103, 7367.
a) A. I. Day, A. P. Arnold and R. J. Blanch (Unisearch Limited,
2
Australia),
PCT
Int.
Appl.
2000,
WO2000
–
2000AU41220000505, 112 (Priority: AU 99 – 232 19990507);
b) J. Kim, I. S. Jung, S. Y. Kim, E. Lee, J. K. Kang, S. Sakamoto,
K. Yamaguchi and K. Kim, J. Am. Chem. Soc. 2000, 122, 540.
A. I. Day, R. J. Blanch, A. P. Arnold, S. Lorenzo, G. R. Lewis and
I. Dance, Angew. Chem. 2002, 114, 285-287; Angew. Chem.
Int. Ed. 2002, 41, 275.
X.-J. Cheng, L.-L. Liang, K. Chen, N.-N. Ji, X. Xiao, J.-X. Zhang,
Y.-Q. Zhang, S.-F. Xue, Q.-J. Zhu, X.-L. Ni and Z. Tao, Angew.
Chem. 2013, 125, 7393-7396; Angew. Chem. Int. Ed. 2013,
52, 7252.
a) S. J. Barrow, S. Kasera, M. J. Rowland, J. del Barrio and O.
A. Scherman, Chem. Rev. 2015, 115, 12320; b) X.-L. Ni, X.
Xiao, H. Cong, L.-L. Liang, K. Cheng, X.-J. Cheng, N.-N. Ji, Q.-J.
Zhu, S.-F. Xue and Z. Tao, Chem. Soc. Rev. 2013, 42, 9480; c)
X.-L. Ni, X. Xiao, H. Cong, Q.-J. Zhu, S.-F. Xue and Z. Tao, Acc.
Chem. Res. 2014, 47, 1386; c) H.-Y. Zhang, Q.-C. Wang, X. Ma
and H. Tian, Org. Lett., 2009, 11, 3234; d) X. Ma and H. Tian,
Acc. Chem. Res. 2014, 47, 1971; e) A. E. Kaifer, W. Li and S. Yi,
Isr. J. Chem. 2011, 51, 496; f) V. Sindelar, S. Silvi, S. E. Parker,
3
4
(see Supporting Information), suggesting
none or tiny
complexation with Me8TD[4], and Cs+, which is of tremendous
radius(1.67Å), also shows no complexation. By contrast, those
metal ions, whether they are one monovalent or bivalent, with
moderate ionic radius―Na+ (0.97Å), Ca2+ (0.99Å), Sr2+(1.13Å),
Ag+(1.15Å), Pb2+ (1.19Å), K+(1.33Å) and Ba2+ (1.35Å)―display
considerable affinities with Me8TD[4]. For those monovalent
ions, it seems that there has an optimal radius during the
combination, because Ag+ has the maximum K value of
5
1.3
×
106M-1, Na+ (smaller radius than Ag+ with smaller
103M-1) and K+ (bigger radius with smaller K 103M-1)
2.4
K~
3.5
×
~
×
come second, while Li+ (smallest radius) and Cs+ (biggest radius)
rate final (no combinations). While for those bivalent ions, no
optimal ionic radius can be found because the ions whose
radius ranging from 0.99Å to 1.35Å are of similar K values
D. Sobransingh and A. E. Kaifer, Adv. Funct. Mater. 2007, 17
,
694 g) S. Liu, A. D. Shukla, S. Gadde, B. D. Wagner, A. E.
Kaifer and L. Isaacs, Angew. Chem. 2008, 120, 2697; Angew.
Chem. Int. Ed. 2008, 47, 2657.
O. A. Gerasko, M. N. Sokolov and V. P. Fedin, Pure Appl.
Chem., 2004, 76, 1633.
H. Cong, Q. J. Zhu, S. F. Xue, Z. Tao and G. Wei, Chin. Sci.
Bull., 2010, 55, 3633.
S. D. Choudhury, J. Mohanty, H. Pal and A. C. Bhasikuttan, J.
Am. Chem. Soc., 2010, 132, 1395.
(Ca2+
Pb2+
~
6.2
7.1
×
104,
Sr2+
~
4.7×
104,
Ba2+
~
7.6×
104,
and
6
7
8
9
~
×
104M-1, respectively). Nevertheless, the none-
combination to Me8TD[4] of the bivalent ions (Mg2+, Co2+, Cu2+
and Zn2+) with small radius is the same situation as that of the
monovalent ion. It should be pointed out that Me8TD[4] bind
selectively to Ag+ with
a
K
value of more than
M. Cao, J. Lin, H. Yang and R. Cao, Chem. Commun., 2010, 46
5088.
,
two orders of magnitude larger than other ions.
The isothermal titration calorimetry results also indicate
that Ag+, Pb2+ and Ba2+ form 1:1 complexes, while the other
cations form 2:1 ones with Me8TD[4]. These phenomenons
should be attributed to the fact that the two cucurbituril
portals, on one hand, could bind respectively with two ions to
form a capsule-like molecule; and on the other hand, could
10 X. Feng, K. Chen, Y.-Q. Zhang, S.-F. Xue, Q.-J. Zhu, Z. Tao and
A. I. Day, CrystEngComm, 2011, 13, 5049.
11 Buschmann, H.-J.; Jansen, K.; Meshke, C. and Schollmeyer, E.
J. Solution Chem. 1998, 27, 135.
12 X. X. Zhang, K. E. Krakowiak, G. Xue, J. S. Bradshaw, and R. M.
Izatt, Ind. Eng. Chem. Res. 2000, 39, 3516.
13 a) J.-Z. Zhao, H. J. Kim, J. Oh, S. Y. Kim, J. W. Lee, S.
Sakamoto, K. Yamaguchi and K. Kim, Angew. Chem. 2001,
113, 4363; Angew. Chem., Int. Ed. 2001, 40, 4233; b) F. Wu,
L.-H. Wu, X. Xiao, Y.-Q. Zhang, S.-F. Xue, Z. Tao and A. I. Day,
J. Org. Chem. 2012, 77, 606; c) A. Flinn, G. C. Hough, J. F.
Stoddart and D. J. Williams, Angew. Chem. 1992, 104, 1550;
Angew. Chem. Int. Ed. 1992, 31, 1475; d) L. Gilberg, S. A.
binds to one ion end to end, generating
a linear
supramolecular polymer. These two binding behaviors have
report[21]
been
confirmed
in
Tao’s
,
where
pentacyclopentanocucurbit[5]uril binds 1:2 with Ca2+ and Sr2+,
and 1:1 with Ba2+.
In conclusion, we have synthesized a new cucurbituril-like
macrocycle, Me8TD[4], by acid-catalyzed condensation of
dimethylpropanediurea and formaldehyde in the presence of
CaCl2 template. Me8TD[4] is the smallest cucurbituril
analogues reported so far with four repeated bi-uredio units,
having smaller portal diameter, cavity width, and lower height
when compared with other cucurbituril species, and exhibits
excellent thermal stability. It should be emphasized that
Me8TD[4] shows an outstanding binding selectivity toward
silver ion over a series of other metal ions.
Khan, M. Enderesova and V. Sindelar, Org. Lett. 2014, 16
,
2446; e) V. Lewin, J. Rivollier, H. K. ilova, P. Berthault, J. P.
Dognon and M. P. Heck G. Huber, Eur. J. Org. Chem. 2013,
18, 3857.
14 a) J. Lagona, P. Mukhopadhyay, S. Chakrabarti and L. Isaacs,
Angew. Chem. 2005, 117, 4922; Angew. Chem. Int. Ed. 2005,
44, 4844; b) K. Kim, N. Selvapalam, Y. H. Ko, K. M. Park, D.
Kim and J. Kim, Chem. Soc. Rev. 2007, 36, 267; c) L. Isaacs,
Chem. Commun. 2009, 619; d) E. Masson, X. Ling, R. Joseph,
L. Kyeremeh-Mensah, X. Lu, RSC Adv. 2012, 2, 1213. d) M. M.
Ayhan, H. Karoui, M. Hardy, A. Rockenbauer, L. Charles, R.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 3
Please do not adjust margins