Inorganic Chemistry
Article
(18) Liu, H.; He, Q.; Jiang, H.; Lin, Y.; Zhang, Y.; Habib, M.; Chen,
S.; Song, L. Electronic Structure Reconfiguration toward Pyrite NiS2
via Engineered Heteroatom Defect Boosting Overall Water Splitting.
ACS Nano 2017, 11, 11574−11583.
(19) Fan, Y.; Wang, D.; Han, D.; Ma, Y.; Ni, S.; Sun, Z.; Dong, X.;
Niu, L. Integrated Hydrogen Evolution and Water-Cleaning via a
Robust Graphene Supported Noble-Metal-Free Fe1‑xCoxS2 System.
Nanoscale 2017, 9, 5887−5895.
(38) Ma, F. X.; Hu, H.; Wu, H. B.; Xu, C. Y.; Xu, Z.; Zhen, L.; David
Lou, X. W. Formation of Uniform Fe3O4 Hollow Spheres Organized
by Ultrathin Nanosheets and Their Excellent Lithium Storage
Properties. Adv. Mater. 2015, 27, 4097−4101.
(39) Liu, P. F.; Li, X.; Yang, S.; Zu, M. Y.; Liu, P.; Zhang, B.; Zheng,
L. R.; Zhao, H.; Yang, H. G. Ni2P(O)/Fe2P(O) Interface Can Boost
Oxygen Evolution Electrocatalysis. ACS Energy Lett. 2017, 2, 2257−
2263.
(20) Liang, Y.; Yu, Y. F.; Huang, Y.; Shi, Y. M.; Zhang, B. Adjusting
the Electronic Structure by Ni Incorporation: A Generalized in situ
Electrochemical Strategy to Enhance Water Oxidation Activity of
Oxyhydroxides. J. Mater. Chem. A 2017, 5, 13336−13340.
(21) Ni, B.; He, T.; Wang, J. O.; Zhang, S. M.; Ouyang, C.; Long, Y.;
Zhuang, J.; Wang, X. The Formation of (NiFe)S2 Pyrite Mesocrystals
as Efficient Pre-Catalysts for Water Oxidation. Chem. Sci. 2018, 9,
2762−2767.
(22) Cheng, N. Y.; Liu, Q.; Asiri, A. M.; Xing, W.; Sun, X. P. A Fe-
Doped Ni3S2 Particle Film as a High-Efficiency Robust Oxygen
Evolution Electrode with Very High Current Density. J. Mater. Chem.
A 2015, 3, 23207−23212.
(23) Zhang, B.; Jiang, K.; Wang, H.; Hu, S. Fluoride-Induced
Dynamic Surface Self-Reconstruction Produces Unexpectedly Effi-
cient Oxygen-Evolution Catalyst. Nano Lett. 2019, 19, 530−537.
(24) Ma, T. Y.; Cao, J. L.; Jaroniec, M.; Qiao, S. Z. Interacting
Carbon Nitride and Titanium Carbide Nanosheets for High-
Performance Oxygen Evolution. Angew. Chem., Int. Ed. 2016, 55,
1138−1142.
(25) Delley, B. An All-Electron Numerical-Method for Solving the
Local Density Functional for Polyatomic-Molecules. J. Chem. Phys.
1990, 92, 508−517.
(40) Zhao, Q.; Yang, J.; Liu, M.; Wang, R.; Zhang, G.; Wang, H.;
Tang, H.; Liu, C.; Mei, Z.; Chen, H.; Pan, F. Tuning Electronic Push/
Pull of Ni-Based Hydroxides to Enhance Hydrogen and Oxygen
Evolution Reactions for Water Splitting. ACS Catal. 2018, 8, 5621−
5629.
(41) Xiao, X. F.; He, C. T.; Zhao, S. L.; Li, J.; Lin, W. S.; Yuan, Z. K.;
Zhang, Q.; Wang, S. Y.; Dai, L. M.; Yu, D. S. A General Approach to
Cobalt-Based Homobimetallic Phosphide Ultrathin Nanosheets for
Highly Efficient Oxygen Evolution in Alkaline Media. Energy Environ.
Sci. 2017, 10, 893−899.
(42) Long, X.; Li, G.; Wang, Z.; Zhu, H.; Zhang, T.; Xiao, S.; Guo,
W.; Yang, S. Metallic Iron-Nickel Sulfide Ultrathin Nanosheets as a
Highly Active Electrocatalyst for Hydrogen Evolution Reaction in
Acidic Media. J. Am. Chem. Soc. 2015, 137, 11900−11903.
(43) Wu, Y.; Liu, X.; Han, D.; Song, X.; Shi, L.; Song, Y.; Niu, S.;
Xie, Y.; Cai, J.; Wu, S.; Kang, J.; Zhou, J.; Chen, Z.; Zheng, X.; Xiao,
X.; Wang, G. Electron Density Modulation of NiCo2S4 Nanowires by
Nitrogen Incorporation for Highly Efficient Hydrogen Evolution
Catalysis. Nat. Commun. 2018, 9, 1425.
(44) Xu, X.; Song, F.; Hu, X. A Nickel Iron Diselenide-Derived
Efficient Oxygen-Evolution Catalyst. Nat. Commun. 2016, 7, 12324.
(45) Piontek, S.; Andronescu, C.; Zaichenko, A.; Konkena, B.; junge
Puring, K.; Marler, B.; Antoni, H.; Sinev, I.; Muhler, M.; Mollenhauer,
D.; Roldan Cuenya, B.; Schuhmann, W.; Apfel, U. P. Influence of the
Fe:Ni Ratio and Reaction Temperature on the Efficiency of
(FexNi1−x)9S8 Electrocatalysts Applied in the Hydrogen Evolution
Reaction. ACS Catal. 2018, 8, 987−996.
(46) Yu, X. Y.; Feng, Y.; Jeon, Y.; Guan, B.; Lou, X. W.; Paik, U.
Formation of Ni-Co-MoS2 Nanoboxes with Enhanced Electrocatalytic
Activity for Hydrogen Evolution. Adv. Mater. 2016, 28, 9006−9011.
(47) Stern, L. A.; Feng, L. G.; Song, F.; Hu, X. L. Ni2P as a Janus
Catalyst for Water Splitting: The Oxygen Evolution Activity of Ni2P
Nanoparticles. Energy Environ. Sci. 2015, 8, 2347−2351.
(48) Chen, Y.; Xu, S.; Li, Y.; Jacob, R. J.; Kuang, Y.; Liu, B.; Wang,
Y.; Pastel, G.; Salamanca-Riba, L. G.; Zachariah, M. R.; Hu, L. FeS2
Nanoparticles Embedded in Reduced Graphene Oxide toward
Robust, High-Performance Electrocatalysts. Adv. Energy Mater.
2017, 7, 1700482.
(49) Luo, P.; Zhang, H.; Liu, L.; Zhang, Y.; Deng, J.; Xu, C.; Hu, N.;
Wang, Y. Targeted Synthesis of Unique Nickel Sulfide (NiS, NiS2)
Microarchitectures and the Applications for the Enhanced Water
Splitting System. ACS Appl. Mater. Interfaces 2017, 9, 2500−2508.
(50) Zhao, W. X.; Guo, C. X.; Li, C. M. Lychee-Like FeS2@FeSe2
Core-Shell Microspheres Anode in Sodium Ion Batteries for Large
Capacity and Ultralong Cycle Life. J. Mater. Chem. A 2017, 5, 19195−
19202.
(51) Shukla, S.; Loc, N. H.; Boix, P. P.; Koh, T. M.; Prabhakar, R. R.;
Mulmudi, H. K.; Zhang, J.; Chen, S.; Ng, C. F.; Huan, C. H.;
Mathews, N.; Sritharan, T.; Xiong, Q. Iron pyrite thin film counter
electrodes for dye-sensitized solar cells: high efficiency for iodine and
cobalt redox electrolyte cells. ACS Nano 2014, 8, 10597−605.
(52) Liu, W.; Hu, E.; Jiang, H.; Xiang, Y.; Weng, Z.; Li, M.; Fan, Q.;
Yu, X.; Altman, E. I.; Wang, H. A Highly Active and Stable Hydrogen
Evolution Catalyst Based on Pyrite-Structured Cobalt Phosphosulfide.
Nat. Commun. 2016, 7, 10771.
(26) Delley, B. Hardness Conserving Semilocal Pseudopotentials.
Phys. Rev. B: Condens. Matter Mater. Phys. 2002, 66, 155125.
(27) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient
Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865−3868.
(28) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient
Approximation Made Simple (Vol 77, Pg 3865, 1996). Phys. Rev. Lett.
1997, 78, 1396−1396.
(29) Weinert, M.; Davenport, J. W. Fractional Occupations and
Density-Functional Energies and Forces. Phys. Rev. B: Condens. Matter
Mater. Phys. 1992, 45, 13709−13712.
(30) Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone
Integrations. Phys. Rev. B 1976, 13, 5188−5192.
(31) Yu, L.; Hu, H.; Wu, H. B.; Lou, X. W. Complex Hollow
Nanostructures: Synthesis and Energy-Related Applications. Adv.
Mater. 2017, 29, 1604563.
(32) Mao, D.; Wan, J.; Wang, J.; Wang, D. Sequential Templating
Approach: A Groundbreaking Strategy to Create Hollow Multishelled
Structures. Adv. Mater. 2018, 1802874.
(33) Liu, Y. J.; Wang, W. Q.; Chen, Q. D.; Xu, C.; Cai, D. P.; Zhan,
H. B. Resorcinol Formaldehyde Resin-Coated Prussian Blue Core
Shell Spheres and Their Derived Unique Yolk Shell FeS2@C Spheres
for Lithium-Ion Batteries. Inorg. Chem. 2019, 58, 1330−1338.
(34) Zhang, G.; Yu, L.; Wu, H. B.; Hoster, H. E.; Lou, X. W.
Formation of ZnMn2O4 Ball-In-Ball Hollow Microspheres as a High-
Performance Anode for Lithium-Ion Batteries. Adv. Mater. 2012, 24,
4609−4613.
(35) Liu, B. J.; Li, X. Y.; Zhao, Q. D.; Hou, Y.; Chen, G. H. Self-
Templated Formation of ZnFe2O4 Double-Shelled Hollow Micro-
spheres for Photocatalytic Degradation of Gaseous o-Dichloroben-
zene. J. Mater. Chem. A 2017, 5, 8909−8915.
(36) Zhang, K.; Park, M.; Zhou, L.; Lee, G. H.; Shin, J.; Hu, Z.;
Chou, S. L.; Chen, J.; Kang, Y. M. Cobalt-Doped FeS2 Nanospheres
with Complete Solid Solubility as a High-Performance Anode
Material for Sodium-Ion Batteries. Angew. Chem., Int. Ed. 2016, 55,
12822−12826.
(37) Shen, L.; Yu, L.; Yu, X. Y.; Zhang, X.; Lou, X. W. Self-
Templated Formation of Uniform NiCo2O4 Hollow Spheres with
Complex Interior Structures for Lithium-Ion Batteries and Super-
capacitors. Angew. Chem., Int. Ed. 2015, 54, 1868−1872.
(53) Zhu, W. X.; Yue, Z. H.; Zhang, W. T.; Hu, N.; Luo, Z. T.; Ren,
M. R.; Xu, Z. J.; Wei, Z. Y.; Suo, Y. R.; Wang, J. L. Wet-Chemistry
Topotactic Synthesis of Bimetallic Iron-Nickel Sulfide Nanoarrays: An
Advanced and Versatile Catalyst for Energy Efficient Overall Water
and Urea Electrolysis. J. Mater. Chem. A 2018, 6, 4346−4353.
L
Inorg. Chem. XXXX, XXX, XXX−XXX