Page 3 of 4
Journal Name
ChemComm
COMMUNICATION
DOI: 10.1039/C5CC02620B
towards the sought pathway 3, completely eliminating noxious
intermediates.
We thank Dr. Marcello Marelli from CNRꢀISTM/ISTeM for
TEM measurement.
Notes and references
a
Dipartimento di Chimica, Università degli Studi di Milano, via Golgi
1
9, 20133, Milano, Italy, Fax: +390250314228; Tel: +390250314228;
eꢀmail: giuseppe.cappelletti@unimi.it.
b
IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Via La
Masa 19, 20156, Milano, Italy.
‡
Present Address: Istituto de Catalisis y Petroleoquimica, Consejo
Superior de Investigaciones Cientificas, C/ Marie Curie 2, L10, 28049
Madrid, Spain.
†
Present Address: Eni S.p.A ꢀ Refining & Marketing Division, San
Donato Milanese Research Center, Via F. Maritano 26, Iꢀ20097 San
Donato Milanese (MI), Italy.
Electronic Supplementary Information (ESI) available: Impregnation
method. Morphological and structural characterizations. Degradation
experiments.
Oxidation
intermediate
products.
Photocurrent
measurements. Optical properties. See DOI: 10.1039/c000000x/
1
A. R. Ribeiro, O. C. Nunes, M. F. R. Pereira and A. M. T. Silva,
Environ. Int., 2015, 75, 33–51.
C.ꢀS. Kuo, C.ꢀF. Lin and P.ꢀK. A. Hong, Water Res., 2015, 74, 1–9.
M. A. Rauf, M. A. Meetani and S. Hisaindee, Desalination, 2011, 276,
Figure 3. Three main proposed mechanisms for the photocatalytic
removal of ꢀtoluidine in aqueous media.
o
2
3
1
3–27.
%
Disappearance
% Mineralization
(TOC)
4
5
6
S. Ardizzone, G. Cappelletti, D. Meroni and F. Spadavecchia, Chem.
Commun. (Camb)., 2011, 47, 2640–2642.
G. Cappelletti, S. Ardizzone, C. L. Bianchi, S. Gialanella, A. Naldoni, C.
Pirola and V. Ragaini, Nanoscale Res. Lett., 2009, 4, 97–105.
J. I. Pankove, Optical processes in semiconductors, PrenticeꢀHall, New
York, Dover., 1975.
Sample
ZnO
ZnO_0.01Bi
(LSV)
UV
74
26
Solar
UV
Solar
56
31
23
6
29
21
7
8
R. Udayabhaskar and B. Karthikeyan, J. Appl. Phys., 2014, 116, 094310.
M. Pudukudy and Z. Yaakob, Superlattices Microstruct., 2013, 63, 47–
Table 2. Comparison of photocatalytic performances of commercial and
ZnO_0.01Bi in terms of percentage of removal/ mineralization passing from
UV to solar light at the end of the photocatalytic treatment (360 min).
5
7.
N. Sobana and M. Swaminathan, Sep. Purif. Technol., 2007, 56, 101–
07.
9
1
Besides, interesting results are also obtained by substituting UV 10 V. Pifferi, G. Cappelletti, S. Ardizzone, L. Falciola, C. Di Bari, F.
Spadavecchia, D. Meroni, A. Carrà, G. Cerrato, S. Morandi and E.
Davoli, Appl. Catal. B Environ., 2014.
light with solar radiation source (Lot oriel, effective power
density: 1 mWcm λ = 280ꢀ400 nm; 14 mWcm λ = 400ꢀ800
nm). Table 2 reports both the disappearance and mineralization
percentages of the oꢀtoluidine in the case of commercial ZnO and
ZnO_0.01Bi (the best sample under UV). The presence of the
bismuth dopant limits the expected lowering of both degradation
ꢀ2
ꢀ2
1
1
1
2
V. Pifferi, G. Cappelletti, C. Di Bari, D. Meroni, F. Spadavecchia and L.
Falciola, Electrochim. Acta, 2014, 146, 403–410.
G. Marci, V. Augugliaro, M. J. LopezꢀMunoz, C. Martin, L. Palmisano,
V. Rives, M. Schiavello, R. J. D. Tilley and A. M. Venezia, J. Phys.
Chem. B, 2001, 105, 1026–1032.
and mineralization with respect to the undoped sample passing 13 G. Marci, V. Augugliaro, J. Lo, L. Palmisano, V. Rives, M. Schiavello,
from higher to lower irradiation energy. Notwithstanding the not
yet optimized photocatalytic performances of the doped sample
R. J. D. Tilley and A. M. Venezia, J. Phys. Chem. B, 2001, 105, 1033–
040.
R. Saravanan, V. K. Gupta, V. Narayanan and A. Stephen, J. Mol. Liq.,
013, 181, 133–141.
J. C. Sin, S. M. Lam, K. T. Lee and A. R. Mohamed, Ceram. Int., 2014,
0, 5431–5440.
1
1
1
1
4
5
6
(
Table 2), the removal of the oꢀtoluidine molecule almost
2
corresponds to the final mineralization, proving that only small
amounts of noxious byproducts are present at the end of the
reaction (after 6h, Figure 2).
4
R. Zamiri, A. F. Lemos, A. Reblo, H. A. Ahangar and J. M. F. Ferreira,
Ceram. Int., 2014, 40, 523–529.
th
Table 1 (5 column) reports the bandꢀgap values obtained by
32
Kubelka–Munk method by elaboration of DR curves in terms of 17 S. Balachandran and M. Swaminathan, J. Phys. Chem. C, 2012, 116,
relative transformed reflectance vs. the photon energy (Figure
S8). The lowering of the bang gap for the doped samples
confirms the shift of the absorption edge towards the visible
region, guaranteeing the best mineralization under solar light.
26306–26312.
1
1
2
8
9
0
V. L. Chandraboss, L. Natanapatham, B. Karthikeyan, J.
Kamalakkannan, S. Prabha and S. Senthilvelan, Mater. Res. Bull., 2013,
4
8, 3707–3712.
A. Senthilraja, B. Subash, P. Dhatshanamurthi, M. Swaminathan and M.
Shanthi, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2015, 138,
The present investigation has paved the way for tailoring new
zinc oxide materials doped with bismuth for the degradation of
toxic emerging pollutants with enhanced performances. Further
3
1–37.
S. Sajjad, S. A K. Leghari, F. Chen and J. Zhang, Chem. - A Eur. J.,
2010, 16, 13795–13804.
studies are required to enhance the surface area of the doped 21 Z. Bian, J. Zhu, S. Wang, Y. Cao, X. Qian and H. Li, J. Phys. Chem. C,
2
008, 112, 6258–6262.
nanoparticles, increasing the pollutants adsorption, and
concomitantly to design new materials capable of addressing
2
2
D. Meroni, V. Pifferi, B. Sironi, G. Cappelletti, L. Falciola, G. Cerrato
and S. Ardizzone, J. Nanoparticle Res., 2012, 14, 1086.
This journal is © The Royal Society of Chemistry 2012
J. Name., 2012, 00, 1-3 | 3