Morphology Efects of Nanoscale Er2O3 and Sr‑Er2O3 Catalysts for Oxidative Coupling…
17. Amin NAS, Pheng SE (2006) Chem Eng J 116:187
4 Conclusions
18. Tang L, Yamaguchi D, Wong L, Burke N, Chiang K (2011)
Catal Today 178:172
In this work, we have demonstrated that Er2O3 and Sr-Er2O3
nanorods outperform Er2O3 and Sr-Er2O3 nanoparticles,
respectively, for oxidative coupling of methane. The XRD
and HAADF STEM mapping results reveal the homogene-
ous distribution of Sr element in Sr-Er2O3 nanorods and
nanoparticles. The HRTEM images reveal that Er2O3 and
Sr-Er2O3 nanorods predominantly expose (440) and (222)
19. Arndt S, Simon U, Kiefer K, Otremba T, Siemensmeyer K, Wol-
lgarten M, Berthold A, Schmidt F, Görke O, Schomäcker R,
Dinse KP (2017) ChemCatChem 9:3583
20. Fang X, Li S, Lin J, Gu J, Yan D (1992) J Mol Catal 6:254
21. Ji S, Xiao T, Li S, Chou L, Zhang B, Xu C, Hou R, York APE,
Green MLH (2003) J Catal 220:47
22. Wang J, Chou L, Zhang B, Song H, Zhao J, Yang J, Li S (2006)
J Mol Catal A 245:272
23. Arndt S, Otremba T, Simon U, Yildiz M, Schubert H, Schomäcker
R (2012) Appl Catal A 425–426:53
−
planes. The (O− +O2 )/O2− ratio, amount of chemisorbed
oxygen species and moderate basic sites are greater on
Er2O3 nanorods than Er2O3 nanoparticles, and on Sr-Er2O3
nanorods than Sr-Er2O3 nanoparticles, as revealed by XPS,
O2-TPD and CO2-TPD, respectively. These reasons are
responsible for the superior reaction performance of Er2O3
and Sr-Er2O3 nanorods to their nanoparticles counterparts.
A 23.2% conversion of CH4 with 50.3% selectivity to C2–C3
can be achieved over Sr-Er2O3 nanorods at 650 °C.
24. Ghose R, Hwang HT, Varma A (2014) Appl Catal A 472:39
25. Elkins TW, Hagelin-Weaver HE (2015) Appl Catal A 497:96
26. Fleischer V, Steuer R, Parishan S, Schomäcker R (2016) J Catal
341:91
27. Arndt S, Laugel G, Levchenko S, Horn R, Baerns M, Schefer M,
Schlögl R, Schomäcker R (2011) Catal Rev Sci Eng 53:424
28. Werny MJ, Wang Y, Girgsdies F, Schlögl R, Trunschke A (2020)
Angew Chem Int Ed 59:14921
29. Wang P, Zhao G, Wang Y, Lu Y (2017) Sci Adv 3:e1603180
30. Fu B, Jiang T, Zhu Y (2018) J Nanosci Nanotechnol 18:3398
31. Huang P, Zhao Y, Zhang J, Zhu Y, Sun Y (2013) Nanoscale
5:10844
Acknowledgements This work was supported financially by the
National Key R&D Program of China (2017YFB0602200), the
National Natural Science Foundation of China (91645201), the
Science and Technology Commission of Shanghai Municipality
(19DZ2270100), the Shanghai Research Institute of Petrochemi-
cal Technology SINOPEC (19ZC06070005), and the Science and
Technology Project of General Administration of Customs of China
(2019HK059).
32. Song J, Sun Y, Ba R, Huang S, Zhao Y, Zhang J, Sun Y, Zhu Y
(2015) Nanoscale 7:2260
33. Jiang T, Song J, Huo M, Yang N, Liu J, Zhang J, Sun Y, Zhu Y
(2016) RSC Adv 6:34872
34. Zhao M, Ke S, Wu H, Xia W, Wan H (2019) Ind Eng Chem Res
58:22847
35. Yoon HJ, Lee J, Kim Y, Cho DW, Sohn Y (2017) Ceram Int
43:2069
36. Papa F, Luminita P, Osiceanu P, Birjega R, Akane M, Balint I
(2011) J Mol Catal A 346:46
37. Kharas KCC, Lunsford JH (1989) J Am Chem Soc 111:2336
38. Hou YH, Han WC, Xia WS, Wan HL (2015) ACS Catal 5:1663
39. Ding W, Chen Y, Fu X (1994) Catal Lett 23:69
40. Bai Y, Xia W, Weng W, Lian M, Zhao M, Wan H (2018) Chem J
Chin Univ Chin 39:247
References
1. Velasco JA, Lopez L, Velásquez M, Boutonnet M, Cabrera S, Järås
S (2010) J Nat Gas Sci Eng 2:222
2. Maqbool W, Park SJ, Lee ES (2014) Ind Eng Chem Res 53:9454
3. Han B, Yang Y, Xu Y, Etim UJ, Qiao K, Xu B, Yan Z (2016) Chin
J Catal 37:1206
41. Sayle TXT, Parker SC, Sayle DC (2005) Phys Chem Chem Phys
7:2936
42. Spinicci R, Tofanari A (1990) Catal Today 6:473
43. Xu J, Zhang Y, Xu X, Fang X, Xi R, Liu Y, Zheng R, Wang X
(2019) ACS Catal 9:4030
4. Horn R, Schlögl R (2015) Catal Lett 145:23
5. Keller GE, Bhasin MM (1982) J Catal 73:9
6. Lunsford JH (1995) Angew Chem Int Ed 34:970
7. Mesters C (2016) Annu Rev Chem Biomol Eng 7:223
8. Aseem A, Jeba GG, Conato MT, Rimer JD, Harold MP (2018)
Chem Eng J 331:132
44. Elkins TW, Roberts SJ, Hagelin-Weaver HE (2016) Appl Catal A
528:175
45. Bernal S, Blanco G, El Amarti A, Cifredo G, Fitian L, Galtayries
A, Martín J, Pintado JM (2006) Surf Interface Anal 38:229
46. Hou YH, Lin YL, Li Q, Weng WZ, Xia WS, Wan HL (2013)
ChemCatChem 5:3725
9. Galadima A, Muraza O (2016) J Ind Eng Chem 37:1
10. Gambo Y, Jalil AA, Triwahyono S, Abdulrasheed AA (2018) J
Ind Eng Chem 59:218
11. Guo X, Fang G, Li G, Ma H, Fan H, Yu L, Ma C, Wu X, Deng D,
Wei M, Tan D, Si R, Zhang S, Li J, Sun L, Tang Z, Pan X, Bao X
(2014) Science 344:616
12. Zhang JZ, Long MA, Howe RF (1998) Catal Today 44:293
13. Ito T, Lunsford JH (1985) Nature 314:721
14. Driscoll DJ, Martir W, Wang JX, Lunsford JH (1985) J Am Chem
Soc 107:58
Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional afliations.
15. Peil KP, Goodwin JG, Marcelin G (1991) J Catal 131:143
16. Nagaoka K, Karasuda T, Aika K (1999) J Catal 181:160
1 3