Communication
ChemComm
J. Org. Chem., 2005, 70, 9538; (m) L. T. Kliman, S. N. Mlynarski and
J. P. Morken, J. Am. Chem. Soc., 2009, 131, 13210; (n) J. R. Coombs,
F. Haeffner, L. T. Kliman and J. P. Morken, J. Am. Chem. Soc., 2013,
135, 11222; (o) N. Iwadate and M. Suginome, J. Am. Chem. Soc., 2010,
´
132, 2548; (p) V. Lillo, M. R. Fructos, J. Ramırez, A. A. C. Braga,
´
´
´
F. Maseras, M. M. Dıaz-Requejo, P. J. Perez and E. Fernandez,
Chem. – Eur. J., 2007, 13, 2614–2621; (q) H. Yoshida, S. Kawashima,
Y. Takemoto, K. Okada, J. Ohshita and K. Takaki, Angew. Chem.,
Int. Ed., 2012, 51, 235; (r) C. J. Adams, R. A. Baber, A. S. Batsanov,
G. Bramham, J. P. H. Charmant, M. F. Haddow, J. A. K. Howard,
W. H. Lam, Z. Lin, T. B. Marder, N. C. Norman and A. G. Orpen, Dalton
Trans., 2006, 1370.
Scheme 3 Proposed mechanism for hydroboration of propene and styrene
leading to Bdan transfer. Calculated electronic energies for styrene (and in
´
´
4 (a) J. Ramırez, M. Sanau´ and E. Fernandez, Angew. Chem.,
Int. Ed., 2008, 47, 5194; (b) Q. Chen, J. Zhao, Y. Ishikawa, N. Asao,
Y. Yamamoto and T. Jin, Org. Lett., 2013, 15, 5766.
brackets for propene) in kcal molÀ1
.
´
´
5 A. Bonet, C. Pubill-Ulldemolins, C. Bo, H. Gulyas and E. Fernandez,
Angew. Chem., Int. Ed., 2011, 50, 7158.
moiety is generated from the easily accessible, chemically resistant
diboron reagent Bpin–Bdan and methoxide. The possibility to
subsequently create an electrophilic Bpin unit on the activated
diboron reagent makes the mixed diboration possible. Calcula-
tions on the energy profile for the organocatalytic diboration of
propene with the Bpin–Bdan diboron reagent in the presence of
alkoxide, support the experimental observation and rationalise
the reaction outcome.
´
´
´
6 (a) J. Cid, H. Gulyas, J. J. Carbo and E. Fernandez, Chem. Soc. Rev.,
´
´
2012, 41, 3558; (b) J. Cid, J. J. Carbo and E. Fernandez, Chem. – Eur. J.,
2012, 18, 12794.
7 (a) K. Lee, A. R. Zhugralin and A. H. Hoveyda, J. Am. Chem. Soc.,
2009, 131, 7253; (b) A. Bonet, H. Gulyas and E. Fernandez, Angew.
Chem., Int. Ed., 2010, 49, 5130; (c) C. Pubill-Ulldemolins, A. Bonet,
´
´
´
´
C. Bo, H. Gulyas and E. Fernandez, Chem. – Eur. J., 2012, 18, 1121;
´
´
(d) C. Sole and E. Fernandez, Angew. Chem., Int. Ed., 2013, 52, 11351;
(e) H. Ito, Y. Horita and E. Yamamoto, Chem. Commun., 2012, 48, 8006;
´
( f ) I. Ibrahem, P. Breistein and A. Cordova, Chem. – Eur. J., 2012,
18, 5175; (g) H. Wu, S. Radomkit, J. M. O’Brien and A. H. Hoveyda,
J. Am. Chem. Soc., 2012, 134, 8277; (h) C. Kleeberg, A. G. Crawford,
A. S. Batsanov, P. Hodgkinson, D. C. Apperley, M. S. Cheung, Z. Y. Lin
Notes and references
´
and T. B. Marder, J. Org. Chem., 2012, 77, 785; (i) C. Sole, H. Gulyas and
1 The original Pt mediated diboration of alkynes: T. Ishiyama, N. Matsuda,
N. Miyaura and A. Suzuki, J. Am. Chem. Soc., 1993, 115, 11018; the
original Rh mediated diboration of alkenes: T. R. Baker, P. Nguyen,
T. B. Marder and S. A. Westcott, Angew. Chem., Int. Ed. Engl., 1995,
34, 1336; the original Pt mediated diboration of alkenes: T. Ishiyama,
M. Yamamoto and N. Miyaura, Chem. Commun., 1997, 689.
´
E. Fernandez, Chem. Commun., 2012, 48, 3769.
´
´
8 (a) A. Bonet, C. Sole, H. Gulyas and E. Fernandez, Org. Biomol.
Chem., 2012, 10, 9677; (b) Th. P. Blaisdell, Th. C. Caya, L. Zhang,
A. Sanz-Marco and J. P. Morken, J. Am. Chem. Soc., 2014, 136, 9256.
9 Y. Nagashima, K. Hirano, R. Takita and M. Uchiyama, J. Am. Chem.
Soc., 2014, 136, 8532.
2 Reviews: (a) J. Takaya and N. Iwasawa, ACS Catal., 2012, 2, 1993;
(b) M. Suginome and T. Ohmura, In Boronic Acids, Wiley-VCH, 10 N. Iwadate and M. Suginome, J. Am. Chem. Soc., 2010, 132, 2548.
New York, 2nd edn, 2011, vol. 1, 171; (c) H. E. Burks and J. P. 11 (a) H. Noguchi, K. Hojo and M. Suginome, J. Am. Chem. Soc., 2007,
´
Morken, Chem. Commun., 2007, 4717; (d) J. Ramırez, V. Lillo, A. M.
129, 758; (b) N. Iwadate and M. Suginome, J. Organomet. Chem., 2009,
694, 1713; (c) H. Noguchi, T. Shioda, Ch.-M. Chou and M. Suginome,
Org. Lett., 2008, 10, 377; (d) L. Iannazzo, K. P. C. Vollhardt, M. Malacria,
C. Aubert and V. Gandon, Eur. J. Org. Chem., 2011, 3283; (e) X. Feng,
H. Jeon and J. Yun, Angew. Chem., Int. Ed., 2013, 52, 3989;
( f ) H. Yoshida, Y. Takemoto and K. Takaki, Chem. Commun.,
2014, 50, 8299.
Segarra and E. Fernandez, C. R. Chim., 2007, 10, 138; (e) T. Ishiyama
and N. Miyaura, Chem. Rec., 2004, 3, 271; ( f ) T. B. Marder and
N. C. Norman, Top. Catal., 1998, 63.
3 (a) T. Ishiyama, N. Matsuda, M. Murata, F. Ozawa, A. Suzuki and
N. Miyaura, Organometallics, 1996, 15, 713; (b) T. Ishiyama, T. Kitano
and N. Miyaura, Tetrahedron Lett., 1998, 39, 2357; (c) T. Ishiyama,
S. Momota and N. Miyaura, Synlett, 1999, 1790; (d) F. Y. Yang and 12 C. Borner and Ch. Kleeberg, Eur. J. Inorg. Chem., 2014, 2486.
´
´
C.-H. Cheng, J. Am. Chem. Soc., 2001, 123, 761; (e) J. B. Morgan, 13 J. Cid, J. J. Carbo and E. Fernandez, Chem. – Eur. J., 2014, 20, 3616.
S. P. Miller and J. P. Morken, J. Am. Chem. Soc., 2003, 125, 8702; 14 Calculations were performed using Gaussian09 (B3LYP functional)
( f ) N. F. Pelz, A. R. Woodward, H. E. Burks, H. E. Sieber and
J. D. Morken, J. Am. Chem. Soc., 2004, 126, 16328; (g) J. D. Sieber and
J. P. Morken, J. Am. Chem. Soc., 2006, 128, 74; (h) H. Y. Cho and J. P.
Morken, J. Am. Chem. Soc., 2008, 130, 16140; (i) T. Ishiyama and
N. Miyaura, J. Organomet. Chem., 2000, 611, 392; ( j) G. Lesley,
P. Nguyen, N. J. Taylor, T. B. Marder, A. J. Scott, W. Clegg and
and the 6-31g(d,p) basis set. In parenthesis we also provide the free
energy corrections including the solvent effect of methanol (e = 32.613)
that introduced into the optimised vacuum geometries by using the
IEFPCM continuum model. Main discussion used electronic energies
because DG values overestimate the entropic cost for bimolecular
processes. See the ESI† for details.
N. C. Norman, Organometallics, 1996, 15, 5137; (k) R. L. Thomas, 15 We have also considered the attack to the internal carbon of the
F. E. S. Souza and T. B. Marder, J. Chem. Soc., Dalton Trans., 2001,
1650; (l) S. Trudeau, J. B. Morgan, M. Shrestha and J. P. Morken,
alkene but the corresponding TSs are 2 and 5 kcal molÀ1 higher
than TS1a and TS1b. See the ESI† for details.
1696 | Chem. Commun., 2015, 51, 1693--1696
This journal is ©The Royal Society of Chemistry 2015