LETTER
Efficient Synthesis of Novel 23-Phosphodiester Silybin Analogues
47
(2) Ferrazzano, G. F.; Amato, I.; Ingenito, A.; Zarrelli, A.; Pinto,
G.; Pollio, A. Molecules 2011, 16, 1486.
(3) Gažák, R.; Walterová, D.; Křen, V. Curr. Med. Chem. 2007,
14, 315.
(4) Lu, P.; Mamiya, T.; Lu, L. L.; Mouri, A.; Niwa, M.;
Hiramatsu, M.; Zou, L. B.; Nagai, T.; Ikejima, T.;
Nabeshima, T. J. Pharmacol. Exp. Ther. 2009, 331, 319.
(5) Hogan, F. S.; Krishnegowda, N. K.; Mikhailova, M.;
Kahlenberg, M. S. J. Surg. Res. 2007, 143, 58.
62.6, 62.2 (C-23, C-23′), 58.8, 58.5 (OCH2CH2CN), 56.0
(OCH3), 43.3, 43.1 {N[CH(CH3)2]2}, 24.5 {N[CH(CH3)2]2},
21.1, 20.9, 20.7, 20.4 (CH3 of acetyl groups), 19.9
(OCH2CH2CN) ppm. 31P NMR (161.98 MHz, CDCl3): δ =
152.9, 150.2 ppm. ESI-HRMS (positive ions): m/z calcd for
C42H47N2O15P: 850.2714; found: [MH]+: 851.2788; [MNa]+
= 873.2606.
(18) Janout, V.; Di Giorgio, C.; Regen, S. L. J. Am. Chem. Soc.
2000, 122, 2671.
(6) Sharma, G.; Singh, R. P.; Chan, D. C.; Agarwal, R.
Anticancer Res. 2003, 23, 2649.
(19) Wallimann, P.; Marti, T.; Fürer, A.; Diederich, F. Chem.
Rev. 1997, 97, 1567.
(7) Zhao, H.; Brandt, G. E.; Galam, L.; Matts, R. L.; Blagg, B.
S. J. Bioorg. Med. Chem. Lett. 2011, 21, 2659 ; and
references cited therein.
(8) Gažák, R.; Valentová, K.; Fuksová, K.; Marhol, P.; Kuzma,
M.; Medina, M. A.; Oborná, I.; Ulrichová, J.; Křen, V. J.
Med. Chem. 2011, 54, 7397.
(20) Swaan, P. W.; Hillgren, K. M.; Szoka, F. C. Jr.; Øie, S.
Bioconjugate Chem. 1997, 8, 520.
(21) Banerjee, S. S.; Aher, N.; Patil, R.; Khandare, J. J. Drug
Deliv. 2012, 2012, 103973.
(22) Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U. S.
Angew. Chem. Int. Ed. 2010, 49, 6288.
(9) Wang, F.; Huang, K.; Yang, L.; Gong, J.; Tao, Q.; Li, H.;
Zhao, Y.; Zeng, S.; Wua, X.; Stockigt, J.; Li, X.; Qu, J.
Bioorg. Med. Chem. 2009, 17, 6380.
(23) Richter, Y.; Fischer, B. J. Biol. Inorg. Chem. 2006, 11, 1063.
(24) Kachur, A. V.; Manevich, Y.; Biaglow, J. E. Free Radical
Res. 1997, 26, 399.
(10) Gažák, R.; Svobodová, A.; Psotová, J.; Sedmera, P.;
Přikrylová, V.; Walterová, D.; Křen, V. Bioorg. Med. Chem.
2004, 12, 5677.
(25) Wolf, S.; Zismann, T.; Lunau, N.; Meier, C. Chem.–Eur. J.
2009, 15, 7656; and references cited therein.
(26) Maier, M. A.; Yannopoulos, C. G.; Mohamed, N.; Roland,
A.; Fritz, H.; Mohan, V.; Just, G.; Manoharan, M.
Bioconjugate Chem. 2003, 14, 18.
(11) Maitrejean, M.; Comte, G.; Barron, D.; El Kirat, K.; Conseil,
G.; Di Pietro, A. Bioorg. Med. Chem. Lett. 2000, 10, 157.
(12) Křen, V.; Kubisch, J.; Sedmera, P.; Halada, P.; Přikrylová,
V.; Jegorov, A.; Cvak, L.; Gebhardt, R.; Ulrichová, J.;
Šimánek, V. J. Chem. Soc., Perkin Trans. 1 1997, 2467.
(13) Zarrelli, A.; Sgambato, A.; Petito, V.; De Napoli, L.;
Previtera, L.; Di Fabio, G. Bioorg. Med. Chem. Lett. 2011,
21, 4389.
(14) De Napoli, L.; Di Fabio, G.; D’Onofrio, J.; Montesarchio, D.
Chem. Commun. 2005, 2586; and references cited therein.
(15) Ettmayer, P.; Amidon, G. L.; Clement, B.; Testa, B. J. Med.
Chem. 2004, 47, 2393.
(27) General Procedure for the Synthesis of Conjugates 5 (A–
E)
Derivative 3 (150 mg, 0.22 mmol) and the requisite
compound A–E (0.21 mmol, previously dried and kept
under reduced pressure, were reacted with a 0.45 M tetrazole
solution in anhydrous MeCN (1.0 mL, 0.45 mmol). The
reaction was left under stirring at r.t. and monitored by TLC
with an eluent system n-hexane–EtOAc = 1:1 (v/v). After 1
h, a 5.5 M t-BuOOH solution in decane (100 μL) was added
to the mixture and left stirring at r.t. After 30 min the reaction
mixture was diluted with CHCl3, transferred into a
separatory funnel, washed three times with H2O,
concentrated under reduced pressure, and purified by flash
chromatography, eluting with n-hexane–EtOAc = 7:3 (v/v),
to afford pure 4a–e as a yellow-brown amorphous powder.
Treatment with concd aq NH3 in MeOH (1:1, v/v) for 1 h at
r.t., led to full removal of the acetyl and 2-cyanoethyl
groups. The concentrated mixture was then purified on a
silica gel column, eluting with CHCl3–MeOH containing
increasing proportions of MeOH. Compounds 5a–e thus
obtained were converted into the corresponding sodium salts
by cation exchange on a DOWEX (Na+ form) resin to obtain
homogeneous samples in good yield (55–72%). See the
Supporting Information.
Compound 5a: NMR spectra of this compound showed
dramatic line broadening, diagnostic of a slow equilibrium
on the NMR time scale, which could suggest a strong
propensity toward aggregation in CDCl3. 1H NMR (500
MHz, CDCl3, r.t., mixture of diastereomers): δ = 7.02–6.60
(6 H, complex signals), 5.85 (2 H, br s), 5.59 (1 H, dd, J =
11.9, 11.7 Hz), 5.11 (2 H, complex signals), 4.78 (1 H, br s),
4.04 (1 H, br signal), 3.95–3.63 (6 H, complex signals), 2.05
(2 H, br signal), 1.92–0.99 (26 H, complex signals), 0.85 (3
H, br s), 0.79 (3 H, d, J = 4.8 Hz), 0.74 (6 H, br s), 0.55 (3 H,
s) ppm. 31P NMR (161.98 MHz, CDCl3): δ = –0.83 ppm.
HRMS (MALDI-TOF, negative ions): m/z calcd for
C52H66O13P: 929.4246; found: 929.4246 [M – H]–.
Compound 5b: 1H NMR (500 MHz, CD3OD, r.t., mixture of
diastereomers): δ = 7.11–6.72 (6 H, complex signals), 5.91
(1 H, d, J = 1.5 Hz), 5.85 (1 H, m), 4.98–4.75 (2 H, complex
signal), 4.41 (1 H, d, J = 11.5 Hz), 4.21–4.05 (5 H, m), 3.88–
3.68 (24 H, complex signals) ppm. 31P NMR (161.98 MHz,
(16) Natarajan, V.; Jeong, K. S.; Byeang, K. Curr. Med. Chem.
2003, 10, 1973.
(17) General Procedure for the Preparation of
Phosphoramidite 3
To 3,5,7,20-tetra-O-acetylsilybin (2, 240.0 mg, 0.37 mmol)
dissolved in anhydrous CH2Cl2 (5 mL), DIEA (390 μL,
2.22 mmol), and 2-cyanoethyl-N,N-diisopropylamino-
chlorophosphoramidite (107 μL, 0.48 mmol) were mixed
under argon. After 30 min the solution was diluted with
EtOAc, and the organic phase was washed twice with brine
and then concentrated. Silica gel chromatography of the
residue (eluent n-hexane–EtOAc = 3:7, v/v, in the presence
of 1% of Et3N), afforded desired compound 3 (205.0 mg,
0.24 mmol) in a 65% yield. Rf = 0.8 (n-hexane–EtOAc = 3:7,
v/v).
1H NMR (500 MHz, CDCl3, r.t., mixture of diastereomers):
δ = 7.11–6.90 (6 H, overlapped signals, H-13, H-15, H-16,
H-18, H-21, H-22), 6.81 (1 H, s, H-8), 6.58 (1 H, s, H-6),
5.66 (1 H, d, J = 11.6 Hz, H-3), 5.37 (1 H, d, J = 11.6 Hz, H-
2), 5.03 (1 H, d, J = 7.6 Hz, H-11), 4.13 (1 H, m, H-10),
3.90–3.60 {9 H, complex signals, OCH3, H-23,
OCH2CH2CN, N[CH(CH3)2]2}, 2.65 (2 H, complex signals,
OCH2CH2CN), 2.37, 2.32, 2.29, 2.04 (12 H, s for each, CH3
of acetyl groups), 1.25–1.15 {12 H, complex signals,
N[CH(CH3)2]2} ppm. 13C NMR (125 MHz, CDCl3, r.t.,
mixture of diastereomers): δ = 185.3 (C-4), 169.1 (C-7),
168.7, 167.8 (CO of acetyl groups), 162.5 (C-5), 156.3 (C-
8a), 151.4 (C-19), 144.3 (C-20), 143.6 (C-16a), 140.2 (C-
12a), 134.8 (C-14), 123.0 (C-17), 120.8 (C-15), 119.9 (C-
22), 119.8, 117.6, 117.2 (C-13, C-16, OCH2CH2CN), 116.2
(C-21), 111.4, 111.2, 110.6, 108.9 (C-6, C-8, C-18, C-4a),
81.0 (C-2), 76.2 (C-10), 75.8 (C-11), 73.3, 73.1 (C-3, C-3′),
© Georg Thieme Verlag Stuttgart · New York
Synlett 2013, 24, 45–48