4
Tetrahedron
COOEt
COOEt
References and notes
H
Ar
Ar
PdLnX
H
XLnPd
1. (a) Negishi, E.; Anastasia, L. Chem. Rev. 2003, 103, 1979-2017. (b)
Doucet, H.; Hierso, J.-C. Angew. Chem., Int. Ed. 2007, 46, 834-871. (c)
Chinchilla, R.; Nájera, C. Chem. Rev. 2007, 107, 874-922. (d) Chinchilla,
R.; Nájera, C. Chem. Soc. Rev. 2011, 40, 5084-5121. (e) Wang, D.; Gao,
S. Org. Chem. Front. 2014, 1, 556-566. (f) Chinchilla, R.; Nájera, C.
Chem. Rev. 2014, 114, 1783-1826. (g) Zhou,Y.; Zhang, Y.; Wang, J.
Org. Biomol. Chem. 2016, 14, 6638-6650.
2E,4Z
COOEt
•
XLnPd
H
H
Ar
Ar
2. Hopf, H.; Jäger, H.; Ernst, L. Liebigs Ann. Chem. 1996, 815-824.
3. (a) Pahadi, N. K.; Camacho, D. H.; Nakamura, I.; Yamamoto, Y. J. Org.
Chem. 2006, 71, 1152-1155. (b) Michinobu, T.; Boudon, C.;
Gisselbrecht, J.-P.; Seiler, P.; Frank, B.; Moonen, N. N. P.; Gross, M.;
Diederich, F. Chem. Eur. J. 2006, 12, 1889-1905. (c) McQuade, D. T.;
Pullen, A. E.; Swager, T. M. Chem. Rev. 2000, 100, 2537-2574. (d) Tour,
J. M. Acc. Chem. Res. 2000, 33, 791-804. (e) Michinobu, T.; May, J. C.;
Lim, J. H.; Boudon, C.; Gisselbrecht, J.-P.; Seiler, P.; Gross, M.;
Biaggio, I.; Diederich, F. Chem. Commun. 2005, 737-739.
4. (a) Karabelas, K.; Hallberg, A. J. Org. Chem. 1988, 53, 4909-4914. (b)
Uenishi, J.; Matsui, K. Tetrahedron Lett. 2001, 42, 4353-4355. (c)
Uenishi, J.; Matsui, K.; Ohmi, M. Tetrahedron Lett. 2005, 46, 225-228.
5. Maciągiewicz, I.; Dybowski, P.; Skowrońska, A. J. Organomet. Chem.
2002, 643-644, 501-503.
6. (a) Shao, L.-X.; Shi, M. J. Org. Chem. 2005, 70, 8635-8637. (b) Shao,
L.-X.; Shi, M. Tetrahedron 2007, 63, 11938-11942.
7. Sim, S. O.; Park, H.-J.; Lee, S. I.; Chung, Y. K. Org. Lett. 2008, 10, 433-
436.
8. Kim, M.; Miller, R. L.; Lee, D. J. Am. Chem. Soc. 2005, 127, 12818-
12819.
9. Dou, X.; Liu, N.; Yao, J.; Lu, T. Org. Lett. 2018, 20, 272-275.
10. (a) Yu, L.; Meng, B.; Huang, X. J. Org. Chem. 2008, 73, 6895-6898. (b)
Meng, B.; Yu, L.; Huang, X. Tetrahedron Lett. 2009, 50, 1947-1950.
11. (a) Bujard, M.; Ferri, F.; Alami, M. Tetrahedron Lett. 1998, 39, 4243-
4246. (b) Fiandanese, V.; Babudri, F.; Marchese, G.; Punzi, A.
Tetrahedron 2002, 58, 9547-9552.
12. (a) Zeng, X.; Hu, Q.; Qian, M.; Negishi, E. J. Am. Chem. Soc. 2003, 125,
13636-13637. (b) Zeng, X.; Qian, M.; Hu, Q.; Negishi, E. Angew. Chem.,
Int. Ed. 2004, 43, 2259-2263.
13. Blanchette, M. A.; Choy, W.; Davis, J. T.; Essenfeld, A. P.; Masamune,
S.; Roush, W. R.; Sakai, T. Tetrahedron Lett. 1984, 25, 2183-2186.
14. Rathke, M. W.; Nowak, M. J. Org. Chem. 1985, 50, 2624-2626.
15. The E/Z mixture of 2-bromo-3-phenylprop-2-enal resulting from
bromination/dehydrobromination of cinnamaldehyde is completely
converted to the Z-isomer after 4 days at room temperature. See also:
Gilley, C. B.; Buller, M. J.; Kobayashi, Y. Org. Lett. 2007, 9, 3631-
3634.
XLnPd
H
H
Ar
XLnPd
COOEt
2Z,4E
COOEt
Scheme 2. Double Z/E stereoinversion via π-σ-π rearrangement
The loss of Z geometry may occur via a zwitterionic
palladium carbene species (with either an anionic or cationic
benzylic carbon), which can be considered as real intermediates
or resonance structures (Scheme 3). Such dipolar intermediates
were first proposed to explain the isomerization of cis-
vinylrhodium complexes.22 Later, this mechanism was used to
explain the stereochemistry of formal anti-carbopalladation16b,23
and other metallocatalyzed additions to alkynes,24 as well as
cross-coupling reactions involving simple vinyl electrophiles.17-19
From the steric point of view, the trans relationship between the
aryl group and the bulky phosphine-ligated Pd moiety should be
thermodynamically more favorable than the initial
Z
configuration. This mechanism is partly supported by the
beneficial effect of polar solvents such as DMA capable of
stabilizing zwitterionic intermediates on the formation of the
inversion product. The rapid conversion of methoxy-substituted
bromodiene 3b and anomalously low stereoselectivity of the
formation of nitro-substituted dienyne 2jb are also in agreement
with the positive charge buildup on the benzylic carbon. Other
isomerization
mechanisms
via
η2-vinylpalladium
or
metallacyclopropene species are also possible.24b,25
O
O
OEt
or
OEt
PdLnX
PdLnX
R
R
16. (a) Blackmore, T.; Bruce, M. I.; Stone, F. G. A. J. Chem. Soc., Dalton
Trans. 1974, 106-112. (b) Amatore, C.; Bensalem, S.; Ghalem, S.;
Jutand, A. J. Organomet. Chem. 2004, 689, 4642-4646.
Scheme 3. Isomerization via a zwitterionic palladium carbene species
17. Lu, G.-P.; Voigtritter, K. R.; Cai, C.; Lipshutz, B. H. J. Org. Chem. 2012,
77, 3700-3703.
18. Lu, G.-P.; Voigtritter, K. R.; Cai, C.; Lipshutz, B. H. Chem. Commun.
2012, 48, 8661-8663.
In summary, we have developed an efficient method for the
stereodivergent synthesis of 2-alkynyl buta-1,3-dienes using
Sonogashira and Horner-Wadsworth-Emmons reactions. By
simply switching the sequence of these reactions, it is possible to
obtain 2-alkynyl buta-1,3-dienes with retention or almost
complete inversion of the double bond configuration. This
approach to the control of stereochemistry could be useful in
stereoselective synthesis of branched enynes, especially when
only a single isomer of starting vinyl halides (pseudohalides) is
available.
19. Krasovskiy A.; Lipshutz B. H. Org. Lett. 2011, 13, 3818-3821.
20. Chehal, N. K.; Budzelaar, P. H. M.; Hultin, P. G. Org. Biomol. Chem.
2018, 16, 1134-1143.
21. (a) Benyunes, S. A.; Brandt, L.; Fries, A.; Green, M.; Mahon, M. F.;
Papworth, T. M. T. J. Chem. Soc., Dalton Trans. 1993, 3785-3793. b)
Ogasawara, M.; Ikeda, H.; Hayashi, T. Angew. Chem., Int. Ed. 2000, 39,
1042-1044. (c) Ogasawara, M.; Ikeda, H.; Nagano, T.; Hayashi, T. J. Am.
Chem. Soc. 2001, 123, 2089-2090. (d) Ogasawara, M.; Okada, A.;
Watanabe, S.; Fan, L.; Uetake, K.; Nakajima, K.; Takahashi, T.
Organometallics 2007, 26, 5025-5029.
Acknowledgments
22. Hart, D. W.; Schwartz, J. J. Organomet. Chem. 1975, 87, C11-C14.
23. (a) Zargarian, D.; Alper, H. Organometallics 1991, 10, 2914-2921. (b)
Huggins, J. M.; Bergman, R. G. J. Am. Chem. Soc. 1981, 103, 3002-
3011. (c) Dyker, G.; Kellner, A. Tetrahedron Lett. 1994, 35, 7633-7636.
(d) Cacchi, S.; Fabrizi, G.; Marinelli, F.; Moro, L.; Pace, P. Tetrahedron
1996, 52, 10225-10240. (e) Rahman, S. M. A.; Sonoda, M.; Itahashi, K.;
Tobe, Y. Org. Lett. 2003, 5, 3411-3414. (f) Fruchey, E. R.; Monks, B.
M.; Patterson, A. M.; Cook, S. P. Org. Lett. 2013, 15, 4362-4365. (g)
Dong, G. R.; Park, S.; Lee, D.; Shin, K. J.; Seo, J. H. Synlett 2013, 24,
1993-1997. (h) Yap, C.; Lenagh-Snow, G. M. J.; Karad, S. N.; Lewis,
W.; Diorazio, L. J.; Lam H. W. Angew. Chem., Int. Ed. 2017, 56, 8216-
8220.
This work was supported by the Ministry of Science and
Higher Education of the Russian Federation.
Supplementary data
Supplementary data associated with this article can be found,
in the online version, at:
24. (a) Brady, K. A.; Nile, T. A. J. Organomet. Chem. 1981, 206, 299-304.
(b) Tanke, R. S.; Crabtree, R. H. J. Am. Chem. Soc. 1990, 112, 7984-
7989. (c) Zargarian, D.; Alper, H. Organometallics 1993, 12, 712-724.