10.1002/anie.201910197
Angewandte Chemie International Edition
COMMUNICATION
[8]
[9]
P. Steinhoff, M. Paul, J. Schroers, M. Tauchert, Dalton Trans. 2018, 48,
1017–1022.
[a] TsN3 as a nitrene source. [b] 4 as a nitrene source. [c] 20 mol% of THF was
added. [d] NMR yield. [e] 3.0 equiv. of TsN3 was used.
Pincer-type transition metal complexes having an anionic boryl or
aluminyl ligand as an X-type ligand were reported to catalyze
dehydrogenation of alkanes and C–H transformations of pyridines. See:
a) E. Kwan, Y. Kawai, S. Kamakura, M. Yamashita, Dalton Trans. 2016,
45, 15931–15941. b) W.-C. Shih, O. Ozerov, Organometallics 2017, 36,
228-233. c) W.-C. Shih, O. Ozerov, J. Am. Chem. Soc. 2017, 139,
17297–17300. d) N. Hara, T. Saito, K. Semba, N. Kuriakose, H. Zheng,
S. Sakaki, Y. Nakao, J. Am. Chem. Soc. 2018, 140, 7070–7073. e) S.
Morisako, S. Watanabe, S. Ikemoto, S. Muratsugu, M. Tada, M.
Yamashita, Angew. Chem., Int. Ed. 10.1002/anie.201909009.; Angew.
Chem. 10.1002/ange.201909009.
In conclusion, we have developed new CpRh complexes
having
a supported Z-type In-metalloligand that turns on
rhodium catalysis for sp2C–H bond activation. This study
demonstrated powerful utility of the Z-type metalloligand for
tuning transition metal catalysis by seemingly changing the
oxidation state of the transition metal. Application of this strategy
to other reactions and Cp metal complexes is in progress toward
further development of organometallic and synthetic chemistry.
[10] There are a few examples of synthesis of bimetallic complexes utilizing
an aminoethyl-functionalized Cp ligand. See: a) R. Fischer, S. Nlate, H.
Hoffmann, E. Herdtweck, J. Blümel, Organometallics 1996, 15, 5746–
5752. b) H. Hoffmann, R. Fischer, B. Antelmann, G. Huttner, J.
Organomet. Chem. 1999, 584, 131–134.
Acknowledgements
This research was supported by JSPS KAKENHI Grant
Numbers 15H05800, 17H03019 (Gran-in-Aid for Scientific
Research (B)), 18H04646 (Hybrid Catalysis), and JST, PRESTO
Grant Number JY290145, Japan.
[11] Synthesis and reactions of Cp-metal complexes having ambiphilic
phosphine ligands are reported, in which the Lewis acidic metal moiety
activates substrates or substituents as a pendant ligand. See: a) F.-G.
Fontaine, D. Zargarian, J. Am. Chem. Soc. 2004, 126, 8786–8794. b) J.
Boudreau, F.-G. Fontaine, Organometallics 2011, 30, 511–519. c) T.
Ostapowicz, C. Merkens, M. Hölscher, J. Klankermayer, W. Leitner, J.
Am. Chem. Soc. 2013, 135, 2104–2107.
Keywords: Z-type ligand • Metalloligand • C–H activation •
Rhodium • Indium
[12] a) Z. Jian, D. Cui, Z. Hou, Chem. Eur. J. 2012, 18, 2674–2684. b) B.
Tang, X. Hu, C. Liu, T. Jiang, F. Alam, Y. Chen, ACS Catal. 2019, 9,
599–604.
[1]
a) F. Fontaine, J. Boudreau, M. Thibault, Eur. J. Inorg. Chem. 2008,
5439–5454. b) A. Amgoune, D. Bourissou, Chem. Commun. 2011, 47,
859–871. c) J. Bauer, H. Braunschweig, R. Dewhurst, Chem. Rev.
2012, 112, 4329–4346. d) G. Bouhadir, D. Bourissou, Chem. Soc. Rev.
2016, 45, 1065–1079.
[13] Synthesis of CpRh complexes having non-supported group 13
metalloligands were reported. See: a) J. Mayer, J. Calabrese,
Organometallics 1984, 3, 1292–1298. b) T. Steinke, C. Gemel, M.
Cokoja, M. Winter, R. Fischer, Chem. Commun. 2003, 1066–1067. c) T.
Steinke, C. Gemel, M. Cokoja, M. Winter, R. Fischer, Dalton Trans.
2004, 55–62. d) J. Bauer, H. Braunschweig, K. Radacki, Chem.
Commun. 2012, 48, 10407–10409.
[2]
[3]
D. You, F. Gabbaï, Trends Chem. 2019, 1, 485–496.
For examples of bimetallic complexes having metal-metal bonds
between two transition metals, see; I. Powers, C. Uyeda, ACS Catal.
2017, 7, 936–958.
[14] Among metal complexes examined, GaCl3 and AlCl3 also formed
corresponding bimetallic complexes to some extent although the yields
were low judged by 1H NMR. See the Supporting Information for details.
[15] B. Cordero, V. Gómez, A. Platero-Prats, M. Revés, J. Echeverría, E.
Cremades, F. Barragán, S. Alvarez, Dalton Trans. 2008, 2832–2838.
[16] H. Adams, N. Bailey, B. Mann, B. Taylor, C. White, P. Yavari, J. Chem.
Soc. Dalton Trans. 1987, 1947–1951.
[4]
a) H. Harman, J. Peters, J. Am. Chem. Soc. 2012, 134, 5080–5082. b)
J. Anderson, J. Rittle, J. Peters, Nature 2013, 501, 84. c) H. Fong, M.-E.
Moret, Y. Lee, J. Peters, Organometallics 2013, 32, 3053–3062. d) T.
Schindler, M. Lux, M. Peters, L. Sharf, L. Maron, M. Tauchert,
Organometallics, 2015, 34, 1978-1984. e) F. Inagaki, C. Matsumoto, Y.
Okada, N. Maruyama, C. Mukai, Angew. Chem., Int. Ed. 2015, 54,
818–822.; Angew. Chem. 2015, 127, 832–836. f) F. Inagaki, K.
Nakazawa, K. Maeda, T. Koseki, C. Mukai, Organometallics 2017, 36,
3005–3008. g) C. Matsumoto, M. Yamada, X. Dong, C. Mukai, F.
Inagaki, Chem. Lett. 2018, 47, 1321–1323.
[17] LUMOs mainly consist of anti-bonding orbitals between Rh and Cp ring
in Cp*Rh(cod), Cp*RhCl2, and [2]+ (Figure S5).
[18] a) G. Song, F. Wang, X. Li, Chem. Soc. Rev. 2012, 41, 3651–3678. b)
J. Park, S. Chang, Chem. Asian. J. 2018, 13, 1089–1102.
[5]
[6]
[7]
a) H. Yang, F. Gabbaı̈, J. Am. Chem. Soc. 2015, 137, 13425–13432. b)
[19] a) J. Kim, S. Park, J. Ryu, S. Cho, S. Kim, S. Chang, J. Am. Chem. Soc.
2012, 134, 9110–9113. b) S.-H. Park, J. Kwak, K. Shin, J. Ryu, Y. Park,
S. Chang, J. Am. Chem. Soc. 2014,136, 2492–2502. c) K. Shin, H. Kim,
S. Chang, Acc. Chem. Res. 2015, 48, 1040–1052. d) Y. Park, Y. Kim, S.
Chang, Chem. Rev. 2017, 117, 9247–9301.
D. You, F. Gabbaï, J. Am. Chem. Soc. 2017 139, 6843-6846. c) S. Sen,
I.-S. Ke, F. Gabbaï, Organometallics 2017, 36, 4224-4230. d) D. You, H.
Yang, S. Sen, F. Gabbaï, J. Am. Chem. Soc. 2018, 140, 9644–9651. e)
Y. Lo, F. Gabbaï, Angew. Chem., Int. Ed. 2019, 58, 10194–10197.;
Angew. Chem. 2019, 131, 10300–10303.
[20] It was reported that RhI and RhII complexes were not effective for the
a) R. Cammarota, C. Lu, J. Am. Chem. Soc. 2015, 137, 12486–12489.
b) R. Cammarota, M. Vollmer, J. Xie, J. Ye, J. Linehan, S. Burgess, A.
Appel, L. Gagliardi, C. Lu, J. Am. Chem. Soc. 2017, 139, 14244–14250.
c) J. Ye, R. Cammarota, J. Xie, M. Vollmer, D. Truhlar,C. Cramer, C. Lu,
L. Gagliardi, ACS Catal. 2018, 8, 4955-4968. d) B. Ramirez, P. Sharma,
R. Eisenhart, L. Gagliardi, C. Lu, Chem. Sci. 2019, 10, 3375–3384
a) J. Takaya, N. Iwasawa, J. Am. Chem. Soc. 2017, 139, 6074–6077.
b) N. Saito, J. Takaya, N. Iwasawa, Angew. Chem., Int. Ed. 2019, 58,
9998–10002.; Angew. Chem. 2019, 131, 10103–10107.
amidation of 2-phenylpyridine with TsN3 in the ref 18a.
This article is protected by copyright. All rights reserved.