Organic Letters
Letter
(e) Zhuo, C.-X.; Zhou, Y.; Cheng, Q.; Huang, L.; You, S.-L.
Enantioselective Construction of Spiroindolines with Three Con-
tiguous Stereogenic Centers and Chiral Tryptamine Derivatives via
Reactive Spiroindolenine Intermediates. Angew. Chem., Int. Ed. 2015,
54, 14146−14149. For a method to rearomatize aza-spiroindolines into
Pictet−Spengler-like products, see: (f) Wu, Q.-F.; Zheng, C.; Zhuo, C.-
X.; You, S.-L. Highly efficient synthesis and stereoselective migration
reactions of chiral five-membered azaspiroindolenines: scope and
mechanistic understanding. Chem. Sci. 2016, 7, 4453−4459. For
methods using more reactive acyl iminium ions, nitrilium ions, N-
sulfonyl iminium ions, or triflyl imidates, see: (g) Chambers, S. J.;
Coulthard, G.; Unsworth, W. P.; O’Brien, P.; Taylor, R. J. K. From
Heteroaromatic Acids and Imines to Azaspirocycles: Stereoselective
Synthesis and 3D Shape Analysis. Chem. - Eur. J. 2016, 22, 6496−6500.
(h) Li, Y.; Zhang, Q.; Du, Q.; Zhai, H. Rh-Catalyzed [3 + 2]
Cycloaddition of 1-Sulfonyl-1,2,3-triazoles: Access to the Framework of
Aspidosperma and Kopsia Indole Alkaloids. Org. Lett. 2016, 18, 4076−
4079. (i) Saya, J. M.; Roose, T. R.; Peek, J. J.; Weijers, B.; de Waal, T. J.
S.; Vande Velde, C. M. L.; Orru, R. V. A.; Ruijter, E. Iodospirocycliza-
tion of Tryptamine-Derived Isocyanides: Formal Total Synthesis of
Aspidofractinine. Angew. Chem., Int. Ed. 2018, 57, 15232−15236.
(j) Saya, J. M.; Oppelaar, B.; Cioc, R. C.; van der Heijden, G.; Vande
Velde, C. M. L.; Orru, R. V. A.; Ruijter, E. Synthesis of polycyclic
spiroindolines by highly diastereoselective interrupted Ugi cascade
reactions of 3-(2-isocyanoethyl)indoles. Chem. Commun. 2016, 52,
12482−12485. (k) Delgado, R.; Blakey, S. B. Cascade Annulation
Reactions To Access the Structural Cores of Stereochemically Unusual
Strychnos Alkaloids. Eur. J. Org. Chem. 2009, 2009, 1506−1510.
(7) (a) Gregory, A. W.; Chambers, A.; Hawkins, A.; Jakubec, P.;
Dixon, D. J. Iridium-Catalyzed Reductive Nitro-Mannich Cyclization.
Chem. - Eur. J. 2015, 21, 111−114. (b) Tan, P. W.; Seayad, J.; Dixon, D.
J. Expeditious and Divergent Total Syntheses of Aspidosperma
Alkaloids Exploiting Iridium(I)-Catalysed Generation of Reactive
Enamine Intermediates. Angew. Chem., Int. Ed. 2016, 55, 13436−
13440. (c) Fuentes de Arriba, A. L.; Lenci, E.; Sonawane, M.; Formery,
O.; Dixon, D. J. Iridium-Catalyzed Reductive Strecker Reaction for
Late-Stage Amide and Lactam Cyanation. Angew. Chem., Int. Ed. 2017,
56, 3655−3659. (d) Xie, L.-G.; Dixon, D. J. Tertiary amine synthesis via
reductive coupling of amides with Grignard reagents. Chem. Sci. 2017,
8, 7492−7497. (e) Xie, L.-G.; Dixon, D. J. Iridium-catalyzed reductive
Ugi-type reactions of tertiary amides. Nat. Commun. 2018, 9, 2841.
(8) (a) Maresh, J. J.; Giddings, L.-A.; Friedrich, A.; Loris, E. A.;
Asymmetric Total Synthesis of Fasicularin by Chiral N-Alkoxyamide
Strategy. Org. Lett. 2019, 21, 1868−1871. (f) Gammack Yamagata, A.
D.; Dixon, D. J. Enantioselective Construction of the ABCDE
Pentacyclic Core of the Strychnos Alkaloids. Org. Lett. 2017, 19,
1894−1897. (g) Huang, P.-Q.; Ou, W.; Han, F. Chemoselective
reductive alkynylation of tertiary amides by Ir and Cu(I) bis-metal
sequential catalysis. Chem. Commun. 2016, 52, 11967−11970.
(h) Katahara, S.; Kobayashi, S.; Fujita, K.; Matsumoto, T.; Sato, T.;
Chida, N. An Iridium-Catalyzed Reductive Approach to Nitrones from
N-Hydroxyamides. J. Am. Chem. Soc. 2016, 138 (16), 5246−5249.
(i) Yang, Z.-P.; Lu, G.-S.; Ye, J.-L.; Huang, P.-Q. Ir-catalyzed
chemoselective reduction of β-amido esters: A versatile approach to
β-enamino esters. Tetrahedron 2019, 75 (12), 1624−1631. (j) Une, Y.;
Tahara, A.; Miyamoto, Y.; Sunada, Y.; Nagashima, H. Iridium-PPh3
Catalysts for Conversion of Amides to Enamines. Organometallics 2019,
38, 852−862. (k) Hu, X.-N.; Shen, T.-L.; Cai, D.-C.; Zheng, J.-F.;
Huang, P.-Q. Iridium-Catalysed Reductive Coupling Reaction of
Tertiary Lactams/Amides with Isocyanoacetates. Org. Chem. Front.
2018, 5, 2051−2056. For the reductive functionalization of secondary
amides, see: (l) Ou, W.; Han, F.; Hu, X.-N.; Chen, H.; Huang, P.-Q.
Iridium-catalyzed Reductive Alkylations of Secondary Amides. Angew.
Chem., Int. Ed. 2018, 57, 11354−11358. (m) Takahashi, Y.; Yoshii, R.;
Sato, T.; Chida, N. Iridium-Catalyzed Reductive Nucleophilic Addition
to Secondary Amides. Org. Lett. 2018, 20, 5705−5708.
(11) Transient silylation of the indoline nitrogen was observed,
1
consuming a further equivalent of the silane. H−31Si HMBC proved
the existence of this N−Si bond when the reaction was carried out in an
experiment on 3-methyl indole (skatole) showed that the silylation is
not occurring on the indole N−H under the reaction conditions, thus
indicating that it must be taking place on either indolenium 8c or
indoline product 10.
(12) Previous studies have found a “dual-silane” effect making TMDS
a more effective silane reducing agent. See: (a) Hanada, S.; Motoyama,
Y.; Nagashima, H. Dual Si−H effects in platinum-catalyzed silane
reduction of carboxamides leading to a practical synthetic process of
tertiary-amines involving self-encapsulation of the catalyst species into
the insoluble silicone resin formed. Tetrahedron Lett. 2006, 47, 6173−
6177. (b) Pesti, J.; Larson, G. L. Tetramethyldisiloxane: A Practical
Organosilane Reducing Agent. Org. Process Res. Dev. 2016, 20, 1164−
1181.
(13) The concentration had little effect on the yield or
diastereoselectivity.
̈
Panjikar, S.; Trout, B. L.; Stockigt, J.; Peters, B.; O’Connor, S.
(14) Double deprotonation of model substrate 7a with LDA followed
by alkylation with alkyl iodides afforded α-alkylated products 7h−7j.
Strictosidine Synthase: Mechanism of a Pictet-Spengler Catalyzing
Enzyme. J. Am. Chem. Soc. 2008, 130, 710−723. (b) Klausen, R. S.;
Kennedy, C. R.; Hyde, A. M.; Jacobsen, E. N. Chiral Thioureas Promote
Enantioselective Pictet−Spengler Cyclization by Stabilizing Every
Intermediate and Transition State in the Carboxylic Acid-Catalyzed
Reaction. J. Am. Chem. Soc. 2017, 139, 12299−12309. (c) Zheng, C.;
Xia, Z.-L.; You, S.-L. Unified Mechanistic Understandings of Pictet-
Spengler Reactions. Chem. 2018, 4, 1952−1966.
́
For similar strategies, see: (a) Amat, M.; Ramos, C.; Perez, M.; Molins,
E.; Florindo, P.; Santos, M. M. M.; Bosch, J. Enantioselective formal
synthesis of ent-rhynchophylline and ent-isorhynchophylline. Chem.
Commun. 2013, 49, 1954−1956. (b) Herrmann, J. L.; Kieczykowski, G.
R.; Normandin, S. E.; Schlessinger, R. H. High yield stereospecific total
syntheses of Eburnamonine and Eburnamine. Tetrahedron Lett. 1976,
801−804.
(9) Previous work by our group has established that both iminium and
enamine species can be accessed via reductive activation. Their fate
depends on the nature of the reaction partner and conditions (see ref 7,
in particular refs 7a−c).
(15) For these substrates, the major reaction byproduct was the
saturated cyclic amine. The reason for the loss of diastereoselectivity is
unclear, but could be attributed to the greater flexibilty of the seven-,
eight-, and nine-membered rings lowering the steric clash in the endo-
TS.
(16) We postulate that with groups bulkier than a N-Me, the increased
steric clash with the alkyl chain of the iminium ion increases the energy
of the exo-TS relative to that of the endo-TS, hence reducing the
diastereoselectivity.
(10) (a) Motoyama, Y.; Aoki, M.; Takaoka, N.; Aoto, R.; Nagashima,
H. Highly efficient synthesis of aldenamines from carboxamides by
iridium-catalyzed silane-reduction/dehydration under mild conditions.
Chem. Commun. 2009, 12, 1574−1576. (b) Nakajima, M.; Sato, T.;
Chida, N. Iridium-Catalyzed Chemoselective Reductive Nucleophilic
Addition to N-Methoxyamides. Org. Lett. 2015, 17, 1696−1699.
(c) Nakayama, Y.; Maeda, Y.; Kotatsu, M.; Sekiya, R.; Ichiki, M.; Sato,
T.; Chida, N. Enantioselective Total Synthesis of (+)-Neostenine.
Chem. - Eur. J. 2016, 22, 3300−3303. (d) Yoritate, M.; Takahashi, Y.;
Tajima, H.; Ogihara, C.; Yokoyama, T.; Soda, Y.; Oishi, T.; Sato, T.;
Chida, N. Unified Total Synthesis of Stemoamide-Type Alkaloids by
Chemoselective Assembly of Five-Membered Building Blocks. J. Am.
Chem. Soc. 2017, 139, 18386−18391. (e) Yamamoto, S.; Komiya, Y.;
Kobayashi, A.; Minamikawa, R.; Oishi, T.; Sato, T.; Chida, N.
(17) This method is complementary to those developed by Taylor (ref
6g) and Movassaghi (ref 6a) as the opposite diastereoselectivity is
observed.
E
Org. Lett. XXXX, XXX, XXX−XXX