Organic Letters
Letter
installation of substituents on the pyrrolizine core by judicious
selection of the three-component combination, namely, easily
accessible iminoesters, acetylenes, and dipolarophiles. Further
applications of this method for stereoselective syntheses of
natural and unnatural biologically active compounds are
underway in our laboratory.
Scheme 3. One-Pot, Three-Component Domino Pyrrolizine
Synthesis
ASSOCIATED CONTENT
* Supporting Information
Experimental details, spectral data, and copies of H and 13C
■
S
1
NMR spectra for all new compounds. This material is available
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported in part by the KAKENHI, a Grant-in-
Aid for Young Scientist (B: 24790007), and The Uehara
Memorial Foundation.
domino process was demonstrated with a concise experimental
technique, including simply mixing the reagents and then
heating at 65 °C for 2 h and then at 80 °C for an additional 4 h.
Aromatic and aliphatic propiolates such as alkyne 2,
trifluoroethyl iminoester 9 derived from various aromatic
aldehydes, and N-substituted and unsubstituted maleimides as
dipolarophiles 5 were proven to be applicable for the domino
reaction with moderate to good yields.18 It is important to note
that key unstable intermediates involved in this domino
process, namely azomethine ylides 4 and activated enamino-
esters 10, are transiently generated and efficiently adopt a
tandem bond formation triggered by gold catalysis in a step-by-
step manner, without requiring isolation, in the same reaction
medium.
Furthermore, we successfully demonstrated that densely
carbon-substituted pyrrolizines could be elaborated via versatile
carbon−carbon bond formation within a few steps by our
strategy. Suzuki−Miyaura coupling of triflate 11, which was
smoothly prepared from pyrrolizine 8a, with trifluoroborates19
was quite effective to introduce phenyl- or trans-1-propenyl
groups on the pyrrolizine core to furnish pyrrolizines 12
(Scheme 4).
REFERENCES
■
(1) For selected recent book and reviews on pyrrolizines, see:
(a) Cossy, J. In Comprehensive Heterocyclic Chemistry III, Vol. XI;
Katritzky, A. R., Ramsden, C. A., Scriven, E. F. V., Taylor, R. J. K., Eds.;
Elsevier: Amsterdam, 2008;, Chapter 11.01. (b) Liddel, J. R. Nat. Prod.
Rep. 2002, 19, 773. (c) Hartmann, T.; Witte, L. In Alkaloids: Chemical
and Biological Perspectives, Vol. 9; Pelletier, S. W., Ed.; Elsevier Science,
Ltd.: Oxford, 1995; Chapter 4.
(2) Schroder, F.; Sinnwell, V.; Baumann, H.; Kaib, K.; Francke, W.
̈
Angew. Chem., Int. Ed. Engl. 1997, 36, 77 and references therein.
(3) Guzman
A. R.; Muchowski, J. M. J. Med. Chem. 1986, 29, 589.
(4) Schweizer, E.; Hoffmann-Roder, A.; Scharer, K.; Olsen, J. A.; Fah,
́
, A.; Yuste, F.; Toscano, R. A.; Young, J. M.; Van Horn,
̈
̈
̈
C.; Seiler, P.; Obst-Sander, U.; Wagner, B.; Kansy, M.; Diederich, F.
ChemMedChem 2006, 1, 611 and references therein.
(5) (a) Trost, B. M. Acc. Chem. Res. 2002, 35, 695. (b) Trost, B. M.
Angew. Chem., Int. Ed. Engl. 1995, 34, 259. (c) Trost, B. M. Science
1991, 254, 1471.
(6) (a) Gaich, T.; Baran, P. S. J. Org. Chem. 2010, 75, 4657.
(b) Young, I. S.; Baran, P. S. Nat. Chem. 2009, 1, 193. (c) Wender, P.
A.; Miller, B. L. Nature 2009, 460, 197. (d) Wender, P. A.; Verma, V.
A.; Paxton, T. J.; Pillow, T. H. Acc. Chem. Res. 2008, 41, 40.
(7) One of the authors recently developed gold-catalyzed domino
reactions. (a) Sugimoto, K.; Toyoshima, K.; Nonaka, S.; Kotaki, K.;
Ueda, H.; Tokuyama, H. Angew. Chem., Int. Ed. 2013, 52, 7168.
(b) Ueda, H.; Yamaguchi, M.; Kameya, H.; Sugimoto, K.; Tokuyama,
H. Org. Lett. 2014, 16, 4948.
Scheme 4. Derivatization of Pyrrolizine 8a
(8) For recent reviews on domino reactions, see: (a) Pellissier, H.
Chem. Rev. 2013, 113, 442. (b) Tejedor, D.; Mendez-Abt, G.; Cotos,
L.; Garcia-Tellado, F. Chem. Soc. Rev. 2013, 42, 458. (c) Hussain, M.;
Van Sung, T.; Langer, P. Synlett 2012, 2734. (d) Galestokova, Z.;
Sebesta, R. Eur. J. Org. Chem. 2012, 6688. (e) Majumdar, K. C.; Taher,
A.; Nandi, R. K. Tetrahedron 2012, 68, 5693. (f) Mueller, T. J. J.
Synthesis 2012, 159. (g) Grossmann, A.; Enders, D. Angew. Chem., Int.
Ed. 2012, 51, 314. (h) Ruiz, M.; Lopez-Alvarado, P.; Giorgi, G.;
Menendez, J. C. Chem. Soc. Rev. 2011, 40, 3445. (i) Tietze, L. F.;
In summary, we achieved a one-pot, convergent, and
stereoselective synthesis of multisubstituted pyrrolizines
triggered by gold catalysis. This one-pot approach worked
quite efficiently to accomplish the atom and step economical
domino process without the need to handle unstable
intermediates. This method potentially enables flexible
Dufert, A. Pure Appl. Chem. 2010, 82, 1375. See also: (j) Tietze, L. F.
̈
Domino Reactions; Wiley-VCH: Weinheim, 2014.
(9) For recent reviews on gold-catalyzed reactions, see: (a) Zhang,
Y.; Luo, T.; Yang, Z. Nat. Prod. Rep. 2014, 31, 489. (b) Obradors, C.;
Echavarren, A. M. Chem. Commun. 2014, 16. (c) Ohno, H. Isr. J. Chem.
1322
Org. Lett. 2015, 17, 1320−1323