Communication
ChemComm
5 Representative methods for the synthesis of cyclopropyl-boronic
esters: (a) M. Murai, C. Mizuta, R. Taniguchi and K. Takai, Org.
Lett., 2017, 19, 6104; (b) G. Benoit and A. B. Charette, J. Am. Chem.
Soc., 2017, 139, 1364; (c) M. Sayes, G. Benoit and A. B. Charette,
Angew. Chem., Int. Ed., 2018, 57, 13514; (d) J. A. Spencer, C. Jamieson
and E. P. A. Talbot, Org. Lett., 2017, 19, 3801; (e) C. Zhong, S. Kunii,
Y. Kosaka, M. Sawamura and H. Ito, J. Am. Chem. Soc., 2010,
132, 11440.
with the experimental finding that cyclopropanes are produced
as single diastereomers.
In conclusion, we developed a concise protocol for the synthesis
of densely functionalized cyclopropylboronic esters from simple
tribromocyclopropanes. PhSeCl-induced 1,2-metallate rearrange-
ment of the cyclopropenylboronic ester ate-complex proceeded
smoothly at À78 1C in a stereospecific manner to produce
b-selenocyclopropylboronic esters in good yield. Over the course
of the reaction, three carbon–bromide bonds were converted to a
carbon–carbon bond, a carbon–borane bond, and a carbon–sele-
nium bond. DFT calculations for the 1,2-metallate rearrangement
step suggested that the reaction proceeds through the formation of
a seleniranium intermediate. The process was highly exothermic
through a transition state with low activation barrier, probably due
to the high ring strain of cyclopropene and the corresponding
seleniranium species. Application of this strain release 1,2-
metallate rearrangement to other electrophiles is currently being
investigated in our laboratory.
This work was supported by a Grant-in-Aid from JSPS
KAKENHI (19K21128, 20K15282), and a grant from the Uehara
Memorial Foundation. The authors gratefully thank the Divi-
sion of Instrumental Analysis, Department of Instrumental
Analysis & Cryogenics, Advanced Science Research Center,
Okayama University, for the NMR and HRMS measurements.
The authors are grateful to Dr Hiromi Ota at the Division of
Instrumental Analysis for the X-ray single-crystal structural
analyses. The authors are grateful to Dr Koichi Mitsudo
(Okayama University) for useful discussions regarding DFT
calculations.
6 (a) M. Rubina, M. Rubin and V. Gevorgyan, J. Am. Chem. Soc., 2003,
125, 7198; (b) A. Edwards, M. Rubina and M. Rubin, Chem. – Eur. J.,
´
´
2018, 24, 1394; (c) A. Parra, L. Amenos, M. Guisan-Ceinos, A. Lopez,
J. L. G. Ruano and M. J. Tortosa, J. Am. Chem. Soc., 2014, 136, 15833;
(d) B. Tian, Q. Liu, X. Tong, P. Tian and G.-Q. Lin, Org. Chem. Front.,
2014, 1, 1116.
7 (a) C. Sanford and V. K. Aggarwal, Chem. Commun., 2017, 53, 5481;
(b) D. S. Matteson, Tetrahedron, 1998, 54, 10555; (c) S. P. Thomas,
R. M. French, V. Jheengut and V. K. Aggarwal, Chem. Rec., 2009,
9, 24; (d) D. Leonori and V. K. Aggarwal, Acc. Chem. Res., 2014,
47, 3174.
8 (a) H. Wang, C. Jing, A. Noble and V. K. Aggarwal, Angew. Chem., Int.
Ed., 2020, 59, 2; (b) S. Namirembe and J. P. Morken, Chem. Soc. Rev.,
2019, 48, 3464; (c) R. Armstrong and V. K. Aggarwal, Synthesis, 2017,
3323.
9 Recently, Aggarwal and coworkers reported the 1,2-metallate rear-
rangement of boronic ester ate-complex induced by the activation of
strained carbon–carbon s-bonds. (a) A. Fawcett, T. Biberger and
V. K. Aggarwal, Nat. Chem., 2019, 11, 117; (b) S. Yu, C. Jing, A. Noble
and V. K. Aggarwal, Angew. Chem., Int. Ed., 2020, 59, 3917; (c) M. Silvi
and V. K. Aggarwal, J. Am. Chem. Soc., 2019, 141, 9511; (d) D. P. Hari,
J. C. Abell, V. Fasano and V. K. Aggarwal, J. Am. Chem. Soc., 2020,
142, 5515; (e) C. H. U. Gregson, V. Ganesh and V. K. Aggarwal, Org.
Lett., 2019, 21, 3412.
10 M. S. Baird, H. H. Hussain and W. Nethercott, J. Chem. Soc., Perkin
Trans. 1, 1986, 1845.
11 A homologation reaction of cyclopropenyllithium with iodomethyl-
boronic ester, which might proceed through an in situ generated
cyclopropenylboronic ester ate-complex, has been reported:
A. N. Baumann, A. Music, K. Karaghiosoff and D. Didier, Chem.
Commun., 2016, 52, 2529.
`
12 (a) R. J. Armstrong, C. Garcıa-Ruiz, E. L. Myers and V. K. Aggarwal,
Angew. Chem., Int. Ed., 2017, 56, 786; (b) R. J. Armstrong, C. Sandford,
`
C. Garcıa-Ruiz and V. K. Aggarwal, Chem. Commun., 2017, 53, 4922.
Conflicts of interest
13 C. W. Nogueira, G. Zeni and J. B. T. Rocha, Chem. Rev., 2004,
104, 6255.
14 J. Plescia and N. Moitessier, Eur. J. Med. Chem., 2020, 195, 112270.
15 L. Shao, Y. Li, J. Lu and Z. Jiang, Org. Chem. Front., 2019, 6, 2999.
16 D. G. Hall, Chem. Soc. Rev., 2019, 48, 3475.
17 CCDC 2025164 contains the supplementary crystallographic data for
this paper†.
There are no conflicts to declare.
Notes and references
1 (a) D. Y.-K. Chen, R. H. Pouwer and J. A. Richard, Chem. Soc. Rev.,
2012, 41, 4631; (b) C. Ebner and E. M. Carreira, Chem. Rev., 2017, 18 Some side products (uncharacterized) were formed along with
117, 11651; (c) Y.-Y. Fan, X.-H. Gao and J.-M. Yue, Sci. China: Chem.,
2016, 59, 1126.
2 T. T. Talele, J. Med. Chem., 2016, 59, 8712.
desired products 2k and 2l, which might be attributed to the high
reactivity of furyl- and alkenyl-groups toward
electrophile.
a selenium
3 W. Wu, Z. Lin and H. Jiang, Org. Biomol. Chem., 2018, 16, 7315.
4 (a) Z.-B. Zhu, Y. Wei and M. Shi, Chem. Soc. Rev., 2011, 40, 4423;
(b) R. Vicente, Synthesis, 2016, 2343.
19 Z. Tao, K. A. Robb, J. L. Panger and S. E. Denmark, J. Am. Chem. Soc.,
2018, 140, 15621.
20 See the Supporting Information for details†.
Chem. Commun.
This journal is © The Royal Society of Chemistry 2020