10.1002/chem.201705999
Chemistry - A European Journal
7
Raubenheimer, G. Frenking, Eur. J. Inorg. Chem. 2009, 2009, 1892-
1904; e) E. Stander-Grobler, O. Schuster, G. Heydenrych, S. Cronje, E.
Tosh, M. Albrecht, G. Frenking, H. G. Raubenheimer, Organometallics
2010, 29, 5821-5833; f) A. K. Guha, C. Das, A. K. Phukan, J. Organomet.
Chem. 2011, 696, 586-593.
a) W. H. Meyer, M. Deetlefs, M. Pohlmann, R. Scholz, M. W.
Esterhuysen, G. R. Julius, H. G. Raubenheimer, Dalton Trans. 2004,
413-420; b) S. K. Schneider, P. Roembke, G. R. Julius, C. Loschen, H.
G. Raubenheimer, G. Frenking, W. A. Herrmann, Eur. J. Inorg. Chem.
2005, 2005, 2973-2977; c) O. Schuster, H. G. Raubenheimer, Inorg.
Chem. 2006, 45, 7997-7999.
a) Y. Han, H. V. Huynh, Chem. Commun. 2007, 1089-1091; b) Y. Han,
H. V. Huynh, G. K. Tan, Organometallics 2007, 26, 6581-6585.
H. G. Raubenheimer, M. Desmet, P. Olivier, G. J. Kruger, J. Chem. Soc.,
Dalton Trans. 1996, 4431-4438.
a) W. A. Herrmann, M. Elison, J. Fischer, C. Köcher, G. R. J. Artus,
Angew. Chem. Int. Ed. Engl. 1995, 34, 2371-2374; b) W. A. Herrmann,
C. Köcher, Angew. Chem. Int. Ed. Engl. 1997, 36, 2162-2187; c) N.
Marion, S. Díez-González, S. P. Nolan, Angew. Chem. Int. Ed. 2007, 46,
2988-3000; d) F. E. Hahn, M. C. Jahnke, Angew. Chem. Int. Ed. 2008,
47, 3122-3172; e) M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius,
Nature 2014, 510, 485-496; f) R. Tonner, G. Heydenrych, G. Frenking,
Chem. Asian J. 2007, 2, 1555-1567.
[21] a) R. Kinjo, B. Donnadieu, G. Bertrand, Angew. Chem. Int. Ed. 2010, 49,
5930-5933; b) N. Burford, T. S. Cameron, J. A. Clyburne, K. Eichele, K.
N. Robertson, S. Sereda, R. E. Wasylishen, W. A. Whitla, Inorg. Chem.
1996, 35, 5460-5467.
[22] H. Bruns, M. Patil, J. Carreras, A. Vázquez, W. Thiel, R. Goddard, M.
Alcarazo, Angew. Chem. Int. Ed. 2010, 49, 3680-3683.
[23] a) D. Himmel, I. Krossing, A. Schnepf, Angew. Chem. Int. Ed. 2014, 53,
370-374; b) D. Himmel, I. Krossing, A. Schnepf, Angew. Chem. Int. Ed.
2014, 53, 6047-6048.
[24] G. Frenking, Angew. Chem. Int. Ed. 2014, 53, 6040-6046.
[25] a) B. Teng, W. Chen, S. Dong, C. W. Kee, D. A. Gandamana, L. Zong,
C.-H. Tan, J. Am. Chem. Soc. 2016, 138, 9935-9940; b) L. Zong, X. Ban,
C. W. Kee, C.-H. Tan, Angew. Chem. Int. Ed. 2014, 53, 11849-11853.
[26] R. Mirabdolbaghi, T. Dudding, Org. Lett. 2015, 17, 1930-1933.
[27] J. Yin, M. M. Zhao, M. A. Huffman, J. M. McNamara, Org. Lett. 2002, 4,
3481-3484.
[3]
[4]
[5]
[6]
[28] a) Crystal data for 1. C15H17F6N4P, Mr = 398.30, monoclinic, space
group P21/c, a = 10.7158(7), b = 9.4889(6), c = 17.4019(10) Å, α = 90°,
β = 94.523(4)°, γ = 90°, V = 1763.93(19) Å3, Z = 4, T = 296(2) K, Dcalcd
=
1.500 g/cm3; Full matrix least-square on F2; R1 = 0.0641, wR2 = 0.1883
for 2451 observed reflections [I > 2(I)] and R1 = 0.0763, wR2 = 0.2029
for all 3105 reflections; GOF = 1.060. CCDC No. 1524038; b) Crystal
data for 2. C14H14F6N3PS, Mr = 401.31, monoclinic, space group P21, a
= 8.655(5), b = 6.570(4), c = 14.889(9)Å, α = 90°, β = 105.833(8)°, γ =
90°, V = 814.5(8) Å3, Z = 2, T = 296(2) K, Dcalcd = 1.636g/cm3; Full matrix
least-square on F2; R1 = 0.0606, wR2 = 0.2169 for 2291 observed
reflections [I > 2(I)] and R1 = 0.0647, wR2 = 0.2231 for all 2569
reflections; GOF = 1.012. CCDC No. 1524039; c) Crystal data for 8.
[7]
a) L. Zhao, M. Hermann, N. Holzmann, G. Frenking, Coord. Chem. Rev.
2017, 344, 163-204; b) G. Frenking, F. Tonner, (Eds.: G. Frenking, S.
Shaik), The Chemical Bond – Chemical Bonding Across the Periodic
Table, Wiley-VCH: Weinheim, 2014, pp. 71–112.
R. Kinjo, B. Donnadieu, M. A. Celik, G. Frenking, G. Bertrand, Science
2011, 333, 610-613.
[8]
[9]
C12H15F12N3P2, Mr
= 491.21, monoclinic, space group P21/c, a =
a) G. Frenking, M. Hermann, D. M. Andrada, N. Holzmann, Chem. Soc.
Rev. 2016, 45, 1129-1144; b) C. Pranckevicius, L. Liu, G. Bertrand, D.
W. Stephan, Angew. Chem. Int. Ed. 2016, 55, 5536-5540; c) G. Frenking,
R. Tonner, Wiley Interdiscip. Rev.:Comput. Mol. Sci. 2011, 1, 869-878;
d) R. Tonner, G. Frenking, Pure Appl. Chem. 2009, 81, 597-614; e) C. A.
Dyker, G. Bertrand, Nat. Chem. 2009, 1, 265-266; f) M. Alcarazo, C. W.
Lehmann, A. Anoop, W. Thiel, A. Fürstner, Nat. Chem. 2009, 1, 295-301.
12.5019(8), b = 10.1716(7), c = 15.3256(9) Å, T = 100(2) K, α = 90°, β =
112.220(2)°, γ = 90°, V = 1804.1(2) Å3, Z = 4, Dcalcd = 1.808 g/cm3; Full
matrix least-square on F2; R1 = 0.1143, wR2 = 0.2875 for 2962 observed
reflections [I > 2(I)] and R1 = 0.1284, wR2 = 0.2990 for all 3207
reflections; GOF = 0.962. CCDC No. 1524040.
[29] To analyze this factor, calculations have been carried out on 4-amino
pyridine and compared with that of 1 (see Supporting Information).
[30] R. Tonner, G. Frenking, Angew. Chem. Int. Ed. 2007, 46, 8695-8698.
[31] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A.
Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F.
Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K.
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.
Kitao, H. Nakai, T. Vreven, J. A. M. Jr., J. E. Peralta, F. Ogliaro, M.
Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R.
Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S.
Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox,
J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E.
Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.
Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P.
Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B.
Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09: EM64L-
G09 Rev. B.01 2010.
[32] a) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785; b) A. D.
Becke, J. Chem. Phys. 1993, 98, 5648-5652; c) R. G. Parr, W. Yang,
Annu. Rev. Phys. Chem. 1995, 46, 701-728.
[33] a) F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-
3305; b) A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 1992, 97, 2571-
2577.
[34] Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215-241.
[35] A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899-926.
[36] L. R. Domingo, E. Chamorro, P. Pérez, J. Org. Chem. 2008, 73, 4615-
4624.
[37] S. Pratihar, S. Roy, J. Org. Chem. 2010, 75, 4957-4963.
[38] A. D. Becke, K. E. Edgecombe, J. Chem. Phys. 1990, 92, 5397-5403.
[39] T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580-592.
[40] R. Tonner, G. Frenking, Chem. Eur. J. 2008, 14, 3273-3289.
[41] K. B. Wiberg, Tetrahedron 1968, 24, 1083-1096.
[10] a) Y. Xiong, S. Yao, S. Inoue, J. D. Epping, M. Driess, Angew. Chem. Int.
Ed. 2013, 52, 7147-7150; b) K. C. Mondal, H. W. Roesky, M. C.
Schwarzer, G. Frenking, B. Niepötter, H. Wolf, R. Herbst-Irmer, D.
Stalke, Angew. Chem. Int. Ed. 2013, 52, 2963-2967.
[11] a) T. Chu, L. Belding, A. van der Est, T. Dudding, I. Korobkov, G. I.
Nikonov, Angew. Chem. Int. Ed. 2014, 53, 2711-2715; b) Y. Xiong, S.
Yao, G. Tan, S. Inoue, M. Driess, J. Am. Chem. Soc. 2013, 135, 5004-
5007.
[12] a) R. Mirabdolbaghi, T. Dudding, T. Stamatatos, Org. Lett. 2014, 16,
2790-2793; b) M. A. Celik, R. Sure, S. Klein, R. Kinjo, G. Bertrand, G.
Frenking, Chem. Eur. J. 2012, 18, 5676-5692; c) T. Ma, X. Fu, C. W.
Kee, L. Zong, Y. Pan, K. W. Huang, C. H. Tan, J. Am. Chem. Soc. 2011,
133, 2828-2831; d) R. A. Kunetskiy, I. Císařová, D. Šaman, I. M.
Lyapkalo, Chem. Eur. J. 2009, 15, 9477-9485; e) I. I. Bernhardi, T.
Drews, K. Seppelt, Angew. Chem. Int. Ed. 1999, 38, 2232-2233.
[13] a) P. V. Bharatam, M. Arfeen, N. Patel, P. Jain, S. Bhatia, A. K.
Chakraborti, S. Khullar, V. Gupta, S. K. Mandal, Chem. Eur. J. 2016, 22,
1088-1096; b) S. Bhatia, P. V. Bharatam, J. Org. Chem. 2014, 79, 4852-
4862; c) S. Bhatia, Y. J. Malkhede, P. V. Bharatam, J. Comput. Chem.
2013, 34, 1577-1588; d) S. Bhatia, C. Bagul, Y. Kasetti, D. S. Patel, P.
V. Bharatam, J. Phys. Chem. A 2012, 116, 9071-9079; e) D. S. Patel, P.
V. Bharatam, J. Phys. Chem. A 2011, 115, 7645-7655; f) D. S. Patel, P.
V. Bharatam, Chem. Commun. 2009, 1064-1066; g) P. V. Bharatam, D.
S. Patel, P. Iqbal, J. Med. Chem. 2005, 48, 7615-7622; h) D. Kathuria,
M. Arfeen, A. A. Bankar, P. V. Bharatam, J. Chem. Sci. 2016, 128, 1607–
1614.
[14] a) B. D. Ellis, C. A. Dyker, A. Decken, C. L. Macdonald, Chem. Commun.
2005, 1965-1967; b) A. H. Cowley, R. A. Kemp, Chem. Rev. 1985, 85,
367-382.
[15] a) Y. Wang, B. Quillian, P. Wei, Y. Xie, C. S. Wannere, R. B. King, H. F.
Schaefer, P. v. R. Schleyer, G. H. Robinson, J. Am. Chem. Soc. 2008,
130, 3298-3299; b) Y. Wang, B. Quillian, P. Wei, C. S. Wannere, Y. Xie,
R. B. King, H. F. Schaefer, P. v. R. Schleyer, G. H. Robinson, J. Am.
Chem. Soc. 2007, 129, 12412-12413.
[16] Y. Wang, Y. Xie, P. Wei, R. B. King, H. F. Schaefer, P. v. R. Schleyer, G.
H. Robinson, Science 2008, 321, 1069-1071.
[17] A. Sidiropoulos, C. Jones, A. Stasch, S. Klein, G. Frenking, Angew.
Chem. Int. Ed. 2009, 48, 9701-9704.
[18] a) N. Holzmann, D. Dange, C. Jones, G. Frenking, Angew. Chem. Int.
Ed. 2013, 52, 3004-3008; b) D. J. Wilson, S. A. Couchman, J. L. Dutton,
Inorg. Chem. 2012, 51, 7657-7668.
[19] Y. Wang, Y. Xie, P. Wei, R. B. King, H. F. Schaefer, P. v. R. Schleyer, G.
H. Robinson, J. Am. Chem. Soc. 2008, 130, 14970-14971.
[20] a) M. Y. Abraham, Y. Wang, Y. Xie, R. J. Gilliard, Jr., P. Wei, B. J.
Vaccaro, M. K. Johnson, H. F. Schaefer, P. v. R. Schleyer, G. H.
Robinson, J. Am. Chem. Soc. 2013, 135, 2486-2488; b) M. Y. Abraham,
Y. Wang, Y. Xie, P. Wei, H. F. Schaefer, P. v. R. Schleyer, G. H.
Robinson, Chem.Eur. J. 2010, 16, 432-435.
This article is protected by copyright. All rights reserved.