Published on Web 04/07/2004
Structural and Rate Studies of the 1,2-Additions of Lithium
Phenylacetylide to Lithiated Quinazolinones: Influence of
Mixed Aggregates on the Reaction Mechanism
Timothy F. Briggs,† Mark D. Winemiller,† David B. Collum,*,†
Rodney L. Parsons, Jr.,‡ Akin H. Davulcu,‡ Gregory D. Harris,‡
Joseph M. Fortunak,‡ and Pat N. Confalone‡
Contribution from the Department of Chemistry and Chemical Biology, Baker Laboratory,
Cornell UniVersity, Ithaca, New York 14853-1301, and Bristol Myers-Squibb Company,
Process Research and DeVelopment, One Squibb DriVe, New Brunswick, New Jersey 08903
Received October 10, 2003; E-mail: dbc6@cornell.edu
Abstract: The 1,2-addition of lithium phenylacetylide (PhCCLi) to quinazolinones was investigated using
a combination of structural and rate studies. 6Li, 13C, and 19F NMR spectroscopies show that deprotonation
of quinazolinones and phenylacetylene in THF/pentane solutions with lithium hexamethyldisilazide affords
a mixture of lithium quinazolinide/PhCCLi mixed dimer and mixed tetramer along with PhCCLi dimer.
Although the mixed tetramer dominates at high mixed aggregate concentrations and low temperatures
used for the structural studies, the mixed dimer is the dominant form at the low total mixed aggregate
concentrations, high THF concentrations, and ambient temperatures used to investigate the 1,2-addition.
Monitoring the reaction rates using 19F NMR spectroscopy revealed a first-order dependence on mixed
dimer, a zeroth-order dependence on THF, and a half-order dependence on the PhCCLi concentration.
The rate law is consistent with the addition of a disolvated PhCCLi monomer to the mixed dimer. Investigation
of the 1,2-addition of PhCCLi to an O-protected quinazolinone implicates reaction via trisolvated PhCCLi
monomers.
Introduction
Several new classes of potent nonnucleoside reverse tran-
scriptase inhibitors have been developed by DuPont Pharma-
ceuticals and Merck Research Laboratories.1 Efavirenz (1) is
now widely prescribed under the names Sustiva and Stocrin
for the treatment of AIDS and symptomatic HIV-1 infection.2-4
Second-generation drug candidates 2, 3, and 4 possess signifi-
cant activity against wild-type HIV and mutant strains resistant
to currently approved drug regimens,1,5,6 propelling them to
advanced clinical trials.5
by the 1,2-addition illustrated in eq 1. This remarkable reaction
presents a challenging problem in structural and mechanistic
organolithium chemistry. The five lithium saltss6, 7, 8, 9, and
lithium hexamethyldisilazide (LiHMDS)scould aggregate in
countless proportions, connectivities, and stereochemistries that
would likely depend markedly on solvent, temperature, con-
centration, and stoichiometries.7 Previous structural studies have
shown that the underlying aggregation effects are indeed very
complex.8-11
Reverse transcriptase inhibitors 2-4 are prepared on a large
scale, up to 5000 kg, in greater than 98% enantiomeric excess
† Cornell University.
‡ Bristol Myers-Squibb Co.
(1) For a review of the syntheses of nonnucleoside reverse transcriptase
inhibitors, see: Parsons, R. L., Jr. Curr. Opin. Drug DiscoVery DeV. 2000,
3, 783.
(2) Young, S. D.; Britcher, S. F.; Tran, L. O.; Payne, L. S.; Lumma, W. C.;
Lyle, T. A.; Huff, J. R.; Anderson, P. S.; Olsen, D. B.; Carroll, S. S.;
Pettibone, D. J.; O’Brien, J. A.; Ball, R. G.; Balani, S. K.; Lin, J. H.; Chen,
I.-W.; Schleif, W. A.; Sardana, V. V.; Long, W. J.; Byrnes, V. W.; Emini,
E. A. Antimicrob. Agents Chemother. 1995, 39, 2602.
As a key step toward understanding the enantioselective 1,2-
addition, we have investigated the nonenantioselective variant
(3) Pierce, M. E.; Parsons, R. L., Jr.; Radesca, L. A.; Lo, Y. S.; Silverman, S.;
Moore, J. R.; Islam, Q.; Choudhury, A.; Fortunak, J. M.; Nguyen, D.; Luo,
C.; Morgan, S. J.; Davis, W. P.; Confalone, P. N.; Chen, C. Y.; Tillyer, R.
D.; Frey, L.; Tan, L.; Xu, F.; Zhao, D. L.; Thompson, A. S.; Corley, E. G.;
Grabowski, E. J. J.; Reamer, R.; Reider, P. J. J. Org. Chem. 1998, 63,
8536. Thompson, A. S.; Corley, E. G.; Huntington, M. F.; Grabowski, E.
J. J. Tetrahedron Lett. 1995, 36, 8937.
(4) Efavirenz is currently being prepared by an amino alcohol-mediated addition
of alkynyl zinc derivatives. Tan, L.; Chen, C. Y.; Tillyer, R. D.; Grabowski,
E. J. J.; Reider, P. J. Angew. Chem., Int. Ed. 1999, 38, 711. Chen, C. Y.;
Tan, L. Enantiomer 1999, 4, 599.
(5) Tucker, T. J.; Lyle, T. A.; Wiscount, C. M.; Britcher, S. F.; Young, S. D.;
Sanders, W. M.; Lumma, W. C.; Goldman, M. E.; O’Brien, J. A.; Ball, R.
G.; Homnick, C. F.; Schleif, W. A.; Emini, E. A.; Huff, J. R.; Anderson,
P. S. J. Med. Chem. 1994, 37, 2437. Corbett, J. W.; Ko, S. S.; Rodgers, J.
D.; Gearhart, L. A.; Magnus, N. A.; Bacheler, L. T.; Diamond, S.; Jeffrey,
S.; Klabe, R. M.; Cordova, B. C.; Garber, S.; Logue, K.; Trainor, G. L.;
Anderson, P. S.; Erickson-Viitanen, S. K. Antimicrob. Agents Chemother.
1999, 43, 2893.
(6) Kauffman, G. S.; Harris, G. D.; Dorow, R. L.; Stone, B. R. P.; Parsons, R.
L., Jr.; Pesti, J. A.; Magnus, N. A.; Fortunak, J. M.; Confalone, P. N.;
Nugent, W. A. Org. Lett. 2000, 2, 3119.
9
10.1021/ja0305813 CCC: $27.50 © 2004 American Chemical Society
J. AM. CHEM. SOC. 2004, 126, 5427-5435
5427