K. Bouzek et al. / Electrochimica Acta 55 (2010) 8172–8181
8181
Table 2
Comparison of the necessary stages and the energy consumption of the distillation columns for the separation of the product from the electrolyte related to a production
capacity of 3500 tons of anisaldehyde per year. For each variant tested, two columns are considered (see Fig. 12). Conversion typically attained by the BASF process is not
known, therefore a parametric study is provided in an interval considered as the most realistic one.
BASF (a) BASF (a) BASF (b) BASF (b) BASF (c) BASF (c) Micro-reactor
100 mol m−3
Micro-reactor
100 mol m−3
Micro-reactor
500 mol m−3
Micro-reactor
500 mol m−3
Conversion
Selectivity
Column
Stages
0.2
0.2
0.3
0.3
0.4
0.4
0.99
0.79
COL1
3
0.99
0.79
COL2
9
0.95
0.83
COL1
3
0.95
0.83
COL2
12
0.85
COL1
2
0.85
COL2
11
0.85
COL1
3
0.85
COL2
11
0.85
COL1
3
0.85
COL2
12
Molar reflux ratio
Flux to column [kg/hr]
Reboler duty [kW]
4-MBA DMA purity [%
(mass)]
0.1
16720
5339
2.5
0.05
10962
3230
2.6
0.05
8060
2390
2.6
0.05
29440
9708
0.11
666
96
0.05
6227
1916
1.2
606
91
1762
830
99.7
1605
636
99.8
1172
337
99.5
99.6
99.6
References
4. Conclusions
[1] D. Pletcher, F.C. Walsh, Industrial Electrochemistry, second ed., Chapman and
Hall, London-New York, 1990.
[2] W. Ehrfeld, V. Hessel, H. Löwe, Microreactors-New Technology for Modern
Chemistry, Wiley-VCH Verlag, Weinheim, 2000.
[3] C. Belmont, H.H. Girault, J. Appl. Electrochem. 24 (1995) 475.
[4] C. Belmont, H.H. Girault, J. Appl. Electrochem. 24 (1995) 719.
[5] C. Belmont, H.H. Girault, Electrochim. Acta 40 (1995) 2505.
[6] C. Belmont, R. Ferrigno, O. Leclerc, H.H. Girault, Electrochim. Acta 44 (1998)
597.
[7] R. Ferrigno, J. Josserand, P.F. Brevet, H.H. Girault, Electrochim. Acta 44 (1998)
587.
[8] R. Ferrigno, C. Comninellis, V. Reid, C. Modes, R. Scannell, H.H. Girault, Elec-
trochim. Acta 44 (1998) 2871.
In the present study a bipolar microstructured reactor, consist-
ing of four electrochemical cells, was designed and constructed.
It was tested using 4-MA anodic methoxylation as a model reac-
tion. The results obtained confirmed that this reactor provides
electrochemical characteristics (process selectivity and substrate
conversion) very close to the industrial capillary-gap cell oper-
ated by BASF. At the same time it permits substantial investment
and operational costs savings in the subsequent product separation
step of the technology. This is due to the reduction of the elec-
trolyte volume to be treated. The exact value strongly depends on
the concentration of the substrate in the electrolyte at the inlet
and degree of conversion reached. Savings of approximately 50% of
the heat energy were calculated for the mean values of the parame-
ters used. However, savings can substantially increase by increasing
the substrate concentration in the electrolyte solution, provided a
high degree of conversion is maintained in a single-pass of the elec-
trolyte through the series of synthesis cells. The reduction in the
investment costs is related to the reduction in size of the distillation
column.
[9] M. Matlosz, J. Electrochem. Soc. 142 (1995) 1915.
[10] C. Vallieres, M. Matlosz, J. Electrochem. Soc. 146 (1999) 2933.
[11] H. Löwe, W. Ehrfeld, Electrochim. Acta 44 (1999) 3679.
[12] M. Küpper, V. Hessel, H. Löwe, W. Stark, J. Kinkel, M. Michel, H. Schmidt-Traub,
Electrochim. Acta 48 (2003) 2889.
[13] C.A. Paddon, G.J. Pritchard, T. Thiemann, F. Marken, Electrochem. Commun. 4
(2002) 825.
[14] D. Horii, M. Atobe, T. Fuchigami, F. Marken, Electrochem. Commun. 7 (2005)
35.
[15] P. He, P. Watts, F. Marken, S.J. Haswell, Electrochem. Commun. 7 (2005) 918.
[16] D. Horii, M. Atobe, T. Fuchigami, F. Marken, J. Electrochem. Soc. 153 (2006)
D143.
[17] C.A. Paddon, M. Atobe, T. Fuchigami, P. He, P. Watts, S.J. Haswell, G.J. Pritchard,
S.D. Bull, F. Marken, J. Appl. Electrochem. 36 (2006) 617.
[18] S. Rode, S. Altmeyer, M. Matlosz, J. Appl. Electrochem. 34 (2004) 671.
[19] A. Attour, S. Rode, A. Ziogas, M. Matlosz, F. Lapicque, J. Appl. Electrochem. 38
(2008) 339.
[20] S. Rode, A. Attour, F. Lapicque, M. Matlosz, J. Electrochem. Soc. 155 (2008) E193.
[21] A. Attour, S. Rode, F. Lapicque, A. Ziogas, M. Matlosz, J. Electrochem. Soc. 155
(2008) E201.
As anticipated, the main challenge is the gas evolution at the
counter-electrode. The presence of gas in the interelectrode space
disturbs the homogeneity of the local potential and current density
field as well as the flow hydrodynamics, thus causing a deteriora-
tion of the process selectivity. This effect is of special interest in the
case of increased substrate concentration in the electrolyte solu-
tion. In this particular case, the negative effect of this aspect was
[22] A. Ziogas, G. Kolb, M. O’Connell, A. Attour, F. Lapicque, M. Matlosz, S. Rode, J.
Appl. Electrochem. 39 (2009) 2297.
[23] K.A. Triplett, B.N. McCord, S.M. Ghiaasiaan, S.I. Abdel-Khalik, A. LeMouel, Int. J.
already well visible for a substrate concentration of 100 mol m−3
,
where process selectivity substantially deteriorated with increas-
ing degree of conversion. The method proposed in this work, i.e. the
separation of hydrogen from the reaction mixture has proven to be
a promising step towards solving this problem. It has also allowed
an operating cell with sufficient selectivity at a substrate concentra-
tion of 500 mol m−3. Given an additional increase in the number of
cells connected in series, a further concentration increase is possi-
ble. If the number of hydrogen separation steps is too high and the
process set-up thereby too complex, a combination of gas phase
separation with elevated operational pressure will be necessary
to minimize the negative effect of the gas phase. Further work is
needed to ensure the homogeneity of the electrolyte flow in the
cell.
Multiphas. Flow 25 (1999) 395.
[24] J. Krˇisˇt’ál, R. Kody´m, K. Bouzek, V. Jirˇicˇny´, Electrochem. Commun. 10 (2008) 204.
[25] T. Bayraktar, S.B. Pidugu, Int. J. Heat Mass Trans. 49 (2006) 815.
[26] S. Waelchli, P.R. von Rohr, Int. J. Multiphas. Flow 32 (2006) 791.
[27] V. Hessel, S. Hardt, H. Löwe, Chemical Micro Process Engineering: Fundamen-
tals, Modelling and Reaction, Wiley-VCH, Weinheim, 2004.
[28] T.S. Zhao, Q.C. Bi, Int. J. Heat Mass Trans. 44 (2001) 2523.
[29] T.S. Zhao, Q.C. Bi, Int. J. Multiphas. Flow 27 (2001) 765.
[30] K.A. Triplett, S.M. Ghiaasiaan, S.I. Abdel-Khalik, D.L. Sadowski, Int. J. Multiphas.
Flow 25 (1999) 377.
[31] B.R. Fu, C. Pan, Int. J. Heat Mass Trans. 48 (2005) 4397.
[32] P.M.Y. Chung, M. Kawaji, Int. J. Multiphas. Flow 30 (2004) 735.
[33] L. Chen, Y.S. Tian, T.G. Karayiannis, Int. J. Heat Mass Trans. Transfer 49 (2006)
4220.
[34] J.W. Coleman, S. Garimella, Int. J. Heat Mass Trans. 42 (1999) 2869.
[35] K. Mishima, T. Hibiki, H. Nishihara, Int. J. Multiphas. Flow 19 (1993) 115.
[36] T. Postler, Z. Slouka, M. Svoboda, M. Pribyl, D. Snita, J. Colloid Interface Sci. 320
(2008) 321.
[37] W. Schrott, M. Pribyl, J. Stepanek, D. Snita, Microelectron. Eng. 85 (2008) 1100.
[38] M. Pribyl, D. Snita, P. Hasal, M. Marek, Chem. Eng. J. 101 (2004) 303.
[39] M. Pribyl, D. Snita, M. Marek, Chem. Eng. J. 105 (2005) 99.
[40] H. Pütter, in: H. Lund, O. Hammerich (Eds.), Organic Electrochemistry, fourth
ed., Marcel Dekker, New York, 2001 (chapter 1).
Acknowledgements
Financial support of this study by the European Commission
under Project No. 0111816-2 IMPULSE and by the Ministry of Edu-
cation, Youth and Sports of the Czech Republic under Project No.:
CEZ: MSM6046137301 is gratefully acknowledged.
[41] J. Krˇisˇt’ál, PhD Thesis: Study of gas-liquid flow in the thin channel, ICT Prague
and ICPF CAS, Prague 2008.
[42] T. Bystron, K. Bouzek, Z. Hasnik, J. Electrochem. Soc. 156 (2009) E179.
ˇ
[43] R. Kody´m, K. Bouzek, D. Snita, J. Thonstad, J. Appl. Electrochem. 37 (2007) 1303.