246
D. Lu et al. / Dyes and Pigments 94 (2012) 239e246
[12] Virji S, Kojima R, Fowler JD, Villanueva JG, Kaner RB, Weiller BH. Polyaniline
4. Conclusions
nanofiber composites with amines: novel materials for phosgene detection.
Nano Res 2009;2:135e42.
[13] Leng B, Jiang JB, Tian H. A mesoporous silica supported Hg2þ chemodosimeter.
AIChE J 2010;56:2957e64.
Monodisperse mesoporous silica nanoparticles modified with
anthracene derivative present a good selectivity and a high sensi-
tivity to Cu2þ. The presence of other metal ions such as Zn2þ, Cd2þ
,
[14] Mu LX, Shi WS, Chang JC, Lee ST. Silicon nanowires-based fluorescence sensor
for Cu (II). Nano Lett 2008;8:104e9.
Fe3þ, Pb2þ and Agþ has little influence on the selectivity of Cu2þ.
The sensitivity of this nanocomposite to Cu2þ is determined by the
local concentration and accessibility of dye molecules in the pore
channel. The improved sensitivity of the nanocomposite is due to
the high local concentration of dye molecules in the pore channel
with less self fluorescence quench caused by molecule collision.
[15] Chen QG, Zhou TY, He CY, Jiang YQ, Chen X. An in situ applicable colorimetric
Cu2þ sensor using quantum dot quenching. Anal Methods 2011;3:1471e4.
[16] Wang HG, Sun L, Li YP, Fei XL, Sun MD, Zhang CQ, et al. Layer-by-layer
assembled Fe3O4@C@CdTe core/shell microspheres as separable luminescent
probe for sensitive sensing of Cu2þ ions. Langmuir 2011;27:11609e15.
[17] Lee MH, Lee SJ, Jung JH, Kim JS. Luminophore-immobilized mesoporous silica
for selective Hg2þ sensing. Tetrahedron 2007;63:12087e92.
[18] Barja BC, Sara E, Bari M, Marchi C, Iglesias FL, Bernardi M. Luminescent Eu(III)
hybrid sensors for in situ copper detection. Sensors Actuators B 2011;158:
214e22.
[19] Song YJ, Qu KG, Xu C, Ren JS, Qu XG. Visual and quantitative detection of
copper ions using magnetic silica nanoparticles clicked on multiwalled carbon
nanotubes. Chem Commun 2010;46:6572e4.
[20] Meng QT, Zhang XL, He C, He GJ, Zhou P, Duan CY. Multifunctional meso-
porous silica material used for detection and adsorption of Cu2þ in aqueous
solution and biological applications in vitro and in vivo. Adv Funct Mater
2010;20:1903e9.
Acknowledgments
This work has been supported by National Nature Science
Foundation of China (21007016 and 20977030), the Project of
International Cooperation of the Ministry of Science and Tech-
nology of China (2011DFA50530), Science and Technology
Commission of Shanghai Municipality (11142201100) and the
Fundamental Research Funds for the Central Universities.
[21] Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous
molecular sieves synthesized by a liquid-crystal template mechanism. Nature
1992;359:710e2.
[22] Rosenholm JM, Meinander A, Peuhu E, Niemi R, Eriksson JE, Sahlgren C, et al.
Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano 2009;
3:197e206.
References
[23] Song CX, Zhang XL, Jia CY, Zhou P, Quan X, Duan CY. A hybrid mesoporous
material functionalized by 1,8-naphthalimide-base receptor and the applica-
tion as chemosensor and absorbent for Hg2þ in water. Talanta 2010;81:
643e9.
[24] Zhou J, Wu W, Caruntu D, Yu MH, Martin A, Chen JF, et al. Synthesis of porous
magnetic hollow silica nanospheres for nanomedicine application. J Phys
Chem C 2007;111:17473e7.
[1] Hosono T, Su CC, Siringan F, Onodera SC. Effects of environmental regulations
on heavy metal pollution decline in core sediments from Manila Bay. Marine
Pollut Bull 2010;60:780e5.
[2] Nriagu JO. A silent epidemic of environmental metal poisoning. Environ Pollut
1988;50:139e61.
[3] Clarkson TW, Magos L, Myers GJ. The toxicology of mercury e current expo-
sures and clinical manifestations. N Engl J Med 2003;349:1731e7.
[4] Berg JM, Shi Y. The galvanization of biology: a growing appreciation for the
roles of Zinc. Science 1996;271:1081e5.
[25] Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidative
stress. Nat Rev Drug Discov 2004;3:205e14.
[26] Xu ZH, Zhang LK, Guo R, Xiang TC, Wu CZ, Zheng Z, et al. A highly sensitive
and selective colorimetric and offeon fluorescent chemosensor for Cu2þ based
on rhodamine B derivative. Sensors Actuators B 2011;156:546e52.
[27] Mu HL, Gong R, Ma Q, Sun YM, Fu EQ. A novel colorimetric and fluorescent
chemosensor: synthesis and selective detection for Cu2þ and Hg2þ. Tetrahe-
dron Lett 2007;30:5525e9.
[28] El-Safty SA, Ismail AA, Shahat A. Optical supermicrosensor responses for
simple recognition and sensitive removal of Cu (II) Ion target. Talanta 2011;
83:1341e51.
[5] Waggoner DJ, Bartnikas TB, Gitlin JD. The role of copper in neurodegenerative
disease. Neurobiol Dis 1999;6:221e30.
[6] Weizman H, Ardon O, Mester B, Libman J, Dwir O, Hadar Y, et al. Fluo-
rescently-labeled ferrichrome analogs as probes for receptor-mediated
microbial iron uptake. J Am Chem Soc 1996;118:12368e75.
[7] Manjusha R, Dash K, Karunasagar D. UV-photolysis assisted digestion of food
samples for the determination of selenium by electrothermal atomic
absorption spectrometry. Food Chem 2007;105:260e5.
[8] He Q, Chang XJ, Huang XP, Hu Z. Silica gel surface-imprinted solid-phase
extraction of Zr (IV) from aqueous solutions. Microchim Act 2008;160:147e52.
[9] Fabbrizzi L, Licchelli M, Pallavicini P. Transition metals as switches. Acc Chem
Res 1999;32:846e53.
[29] Torrado A, Walkup GK, Imperiali B. Exploiting polypeptide motifs for the
design of selective Cu (II) ion chemosensors. J Am Chem Soc 1998;120:
609e10.
[30] Wang JG, Xiao Q, Zhou HJ, Sun PC, Ding DT, Chen TH. Anionic surfactant-
templated mesoporous silica (AMS) nano-spheres with radially oriented
mesopores. J Colloid Interf Sci 2008;323:332e7.
[10] Kim JS, Quang DT. Calixarene-derived fluorescent probes. Chem Rev 2007;
107:3780e99.
[11] Lee HY, Son HJ, Lim JM, Oh JM, Kang DM, Han WS, et al. BODIPY-functionalized
[31] Lakowicz JR. Quenching of fluorescence. Principles of fluorescence Spectros-
copy. 3nd ed. New York: Springer; 2006. pp. 288e289.
gold nanoparticles as
a selective fluoro-chromogenic chemosensor for
imaging Cu2þ in living cells. Analyst 2010;135:2022e7.