B. Cristóvão et al. / Inorganica Chimica Acta 378 (2011) 288–296
295
Supplementary data associated with this article can be found, in
References
[1] A. Jana, S. Majumder, L. Carrella, M. Nayak, T. Weyhermueller, S. Dutta, D.
Schollmeyer, E. Rentschler, R. Koner, S. Mohanta, Inorg. Chem. 49 (2010) 9012.
[2] A.M. Atria, Y. Moreno, E. Spodine, M.T. Garland, R. Baggio, Inorg. Chim. Acta 335
(2002) 1.
[3] R. Koner, G.H. Lee, Y. Wang, H.H. Wei, S. Mohanta, Eur. J. Inorg. Chem. (2005)
1500.
[4] C. Benelli, D. Gatteschi, Chem. Rev. 102 (2002) 2369.
[5] W. Shi, X.Y. Chen, B. Zhao, A. Yu, H.B. Song, P. Cheng, H.G. Wang, D.Z. Liao, S.P.
Yan, Inorg. Chem. 45 (2006) 3949.
[6] J.H. Wang, P.F. Yan, G.M. Li, J.W. Zhang, P. Chen, M. Suda, Y. Einaga, Inorg. Chim.
Acta 363 (2010) 3706.
[7] Y.T. Li, C.W. Yan, X.C. Zeng, Trans. Met. Chem. 26 (2001) 110.
[8] M. Schley, S. Fritzsche, P. Lonnecke, E. Hey-Hawkins, Dalton Trans. 39 (2010)
4090.
[9] G. Novitchi, S. Shova, A. Caneschi, J.P. Costes, M. Gdaniec, N. Stanica, Dalton
Trans. (2004) 1194.
[10] T. Gao, P.F. Yan, G.M. Li, G.F. Hou, J.S. Gao, Chim. Acta 361 (2008) 2051.
[11] X.P. Yang, R.A. Jones, W.K. Wong, V. Lynch, M.M. Oye, A.L. Holmes, Chem.
Commun. (2006) 1836.
Fig. 9. Field dependence of the magnetization for complex 2. The dashed line is the
Brillouin function for two independent S = 1/2 and S = 4 systems.
[12] J. Paulovic, F. Cimpoesu, M. Ferbinteanu, K. Hiro, J. Am. Chem. Soc. 126 (2004)
3321.
[13] X. Yang, R.A. Jones, Q. Wu, M.M. Oye, W.K. Lo, W.K. Wong, A.L. Holmes,
Polyhedron 25 (2006) 271.
(12.22 cm3 molꢁ1 K) expected for a pair of noninteracting CuII
(S = 1/2) and TbIII (4f8, J = 6, S = 3, L = 3, 7F6) ions. As the temperature
[14] J.P. Costes, F. Dahan, A. Dupuis, J.P. Laurent, New J. Chem. (1998) 1525.
[15] J.P. Costes, F. Dahan, A. Dupuis, J.P. Laurent, Inorg. Chem. 35 (1996) 2400.
[16] C.T. Zeyrek, A. Elmali, Y. Elerman, J. Mol. Struct. 740 (2005) 47.
[17] O. Margeat, P.G. Lacroix, J.P. Costes, B. Donnadieu, C. Lepetit, Inorg. Chem. 43
(2004) 4743.
[18] J.P. Costes, B. Donnadieu, R. Gheorghe, G. Novitchi, J.P. Tuchagues, L. Vendier,
Eur. J. Inorg. Chem. (2008) 5235.
[19] S. Akine, T. Matsumoto, T. Taniguchi, T. Nabeshima, Inorg. Chem. 44 (2005)
3270.
[20] M. Sakamoto, Y. Nishida, A. Matsumoto, Y. Sadaoka, M. Sakai, Y. Fukuda, M.
Ohba, H. Sakiyama, N. Matsumoto, H. Okawa, J. Coord. Chem. 38 (1996) 347.
[21] S. Mohanta, H.H. Lin, C.J. Lee, H.H. Wei, Inorg. Chem. Commun. 5 (2002) 585.
[22] A. Elmali, Y. Elerman, J. Mol. Struct. 737 (2005) 29.
[23] J.P. Costes, F. Dahan, C. R. Acad. Sci. Paris, Chimie/Chemistry 4 (2001) 97.
[24] J.P. Costes, F. Dahan, A. Dupuis, Inorg. Chem. 39 (2000) 165.
[25] H. Wang, D. Zhang, Z.H. Ni, X. Li, L. Ti, J. Jiang, Inorg. Chem. 48 (2009) 5946.
[26] H. Kara, Y. Elerman, P. Prout, Z. Naturforsch, Z. Naturforsch B 55 (2000) 1131.
[27] J.P. Costes, G. Novitchi, S. Shova, F. Dahan, J.P. Bruno Donnadieu, J.P. Tuchagues,
Inorg. Chem. 43 (2004) 7792.
[28] J.P. Costes, F. Dahan, A. Dupuis, J.P. Laurent, Inorg. Chem. 36 (1997) 3429.
[29] J.P. Costes, F. Dahan, B. Donnadieu, J. Garcia-Tojal, J.P. Laurent, Eur. J. Inorg.
Chem. (2001) 363.
[30] I. Ramade, O. Kahn, Y. Jeannin, F. Robert, Inorg. Chem. 36 (1997) 930.
[31] M. Sasaki, K. Manseki, H. Horiuchi, M. Kumagai, M. Sakamoto, H. Nishida, Y.
Sakiyama, M. Sakai, Y. Sadaoka, M. Ohba, H. Okawa, J. Chem. Soc., Dalton Trans.
(2000) 259.
is lowered,
14.61 cm3 molꢁ1 K at 10 K. The profile of the
is strongly suggestive of the occurrence a ferromagnetic CuII–TbIII
interaction in 10–300 K temperature range. Below 10 K, the mT
v
mT gradually increases to reach
a value of
vmT versus T curve
v
values are decreased to 9.37 cm3 K molꢁ1 at 1.8 K which may be
attributed to zero-field splitting (ZFS) effects of the S = 9/2 ground
state and/or intermolecular interactions. A quantitative analysis of
complex 2 is not possible, due to the orbital momentum of the ter-
bium(III) ion [80,81]. Similar to the trend found for the dinuclear
CuIIGdIII complex, 2 exhibits an apparent ferromagnetic interaction
for the similar dihedral angles (a = 2.62°). For 2 the field depen-
dence of the magnetization M at 2 K is shown in Fig. 9. The increase
of the field up to 5 T results in a magnetization value above 6 lB.
The M = f(H) is situated below the Brillouin function constructed
for two independent S = 1/2 and S = 4 systems. This fact evidences
an antiferromagnetic interaction and/or presence of zero – field
splitting effect for TbIII ions.
4. Conclusion
[32] R.E.P. Winpenny, Chem. Soc. Rev. (1998) 447.
[33] A. Bencini, C. Benelli, A. Caneschi, R.L. Carlin, A. Dei, D.J. Gatteschi, J. Am. Chem.
Soc. 107 (1985) 8128.
[34] C. Benelli, M. Murrie, S. Parson, R.E.P. Winpenny, J. Chem. Soc., Dalton Trans.
(1999) 4125.
[35] R. Koner, H.H. Lin, H.H. Wei, S. Mohanta, Inorg. Chem. 44 (2005) 3524.
[36] S. Kyatskaya, J.R.G. Mascaros, L. Bogani, F. Hennrich, M. Kappes, W.
Wernsdorfer, M. Ruben, J. Am. Chem. Soc. 131 (2009) 15143.
[37] A. Figuerola, C. Diaz, J. Ribas, V. Tangoulis, J. Granell, F. Lloret, J. Mahia, M.
Maestro, Inorg. Chem. 42 (2003) 5274.
[38] J.P. Costes, L. Vendier, Eur. J. Inorg. Chem. (2010) 2768.
[39] M. Ryazanov, V. Nikiforov, F. Lloret, M. Julve, N. Kuzmina, A. Gleizes, Inorg.
Chem. 41 (2002) 1816.
The heteronuclear CuIIGdIII (1) and CuIITbIII (2) compounds are
isostructural. In both complexes, the lanthanide(III) center has an
O9 coordination environment forming a slightly distorted tri-
capped trigonal prism. The discrete dinuclear units interact
through O–H...O hydrogen bonds forming layers between which
short Br...O contacts are observed. The dinuclear CuIIGdIII (1) and
CuIITbIII (2) compounds exhibit ferromagnetic interactions. Consid-
eration of the magnetic and structural data obtained for various
dinuclear Cu–Gd complexes leads to a correlation between the
magnitude of the magnetic interaction (coupling constant J value)
[40] F.Z.C. Fellah, J.P. Costes, F. Dahan, C. Duhayon, G. Novitchi, J.P. Tuchagues, L.
Vendier, Inorg. Chem. 47 (2008) 6444.
and the exponential of the dihedral angle
a between the two O–
[41] G. Novitchi, J.P. Costes, B. Donnadieu, Eur. J. Inorg. Chem. (2004) 1808.
[42] J.P. Costes, F. Dahan, A. Dupuis, J.P. Laurent, Inorg. Chem. 39 (2000) 169.
[43] J.P. Costes, F. Dahan, A. Dupuis, Inorg. Chem. 39 (2000) 5994.
[44] R. Watanabe, K. Fujiwara, A. Okazawa, G. Tanaka, S. Yoshii, H. Nojiri, T. Ishida,
Chem. Commun. 47 (2011) 2110.
Cu–O and O–Gd–O fragments of the bridging CuO2Gd network.
The occurrence of a ferromagnetic interaction between CuII and
GdIII/TbIII ions of the dinuclear entity is supported by the field
dependence of the magnetization at 2 K.
[45] T. Kajiwara, M. Nakano, S. Takaishi, Masahiro Yamashita, Inorg. Chem. 47
(2008) 8604.
[46] A. Okazawa, R. Watanabe, M. Nezu, T. Shimada, S. Yoshii, H. Nojiri, T. Ishida,
Chem. Lett. 39 (2010) 1331.
Appendix A. Supplementary material
[47] J.P. Costes, J.M. Clemente-Juan, F. Dahan, J. Milon, Inorg. Chem. 43 (2004) 8200.
[48] J.P. Costes, F. Dahan, W. Wernsdorfer, Inorg. Chem. 45 (2006) 5.
[49] J.P. Costes, S. Shova, W. Wernsdorfer, Dalton Trans. (2008) 1843.
[50] S. Osa, T. Kido, N. Matsumoto, N. Re, A. Pochaba, J. Mrozinski, J. Am. Chem. Soc.
126 (2004) 420.
CCDC 820671, 820669 and 820670 contains the supplementary
crystallographic data for compounds 0, 1 and 2, respectively. These
data can be obtained free of charge from The Cambridge Crystallo-
[51] O. Kahn, Molecular Magnetism, Willey-VCH, 1993.