(
16.9 and 7.69%) of the reference electrode fabricated with the
benchmark P25 TiO nanocrystals, whose specific surface area
is nearly two times higher than our nano-sized rods (48 vs.
4 2
(ii) a coexistence stage (5–18 h) of Cs0.68Ti1.83O and TiO ;
2
(iii) a possible ripening and recrystallization stage after 18 h.
In stages (i) and (ii), the gradual release of titanium species and
concomitant pH value increase of the solution from an initial
8.4 to a final 12.1 play a central role in controlling
2
À1
2
5 m g ). A reasonable explanation for the good performance
of the {010} dominant anatase rods can be attributed to the
unique surface atomic structure featuring both 100% five-
coordinated Ti (Ti5c) atoms and very flat bond configurations
the nucleation and growth of TiO , and obtaining a high
2
percentage of {010}. Regarding the formation processes of
(
see Fig. 4a in ref. 4), which may contribute to the effective
adsorption of dye molecules and promote electron transfer
from excited molecules to TiO . In addition, the electrodes of
the nano-sized rods from H0.68Ti1.83
from the above include
4
O , the obvious differences
a
faster dissolution rate of
2
4 4
H0.68Ti1.83O than Cs0.68Ti1.83O and a higher initial pH value
the {010} dominant rods have a marginally larger open-circuit
voltage Voc than that of P25 as a result of their higher CB
minimum (739 vs. 727 mV).
(10.8) mediated by additional Cs
pH value (11.5) during the reaction. These features result in a
much higher density of TiO nucleation and consequently
smaller rods. The pH value mediator Cs CO can be replaced
2 3
CO and slightly increased
2
Photocatalytic conversion of CO into chemical fuels such
2
2
3
as CH and CH OH is a highly important yet very challenging
4
by other weak basic agents such as Na CO and K CO to
2 3 2 3
3
1
3
research topic. This is largely due to the multi-carrier
transfer processes required not only by the photooxidation
prepare similar nano-sized rods (see Fig. S7, ESIw).
The authors thank NSFC (Nos. 50921004, 51002160,
of H
CO
2
O with holes from VB but also the photoreduction of
À
21090343), Solar Energy Initiative of CAS for financial
2
+
with electrons from CB, for instance, CO
2
+ 8e
+
support. GL thanks the IMR SYNL-T.S. Keˆ Research
0
8
H
- CH
pH = 7]. We estimated the photocatalytic conversion activity
of CO into CH of the Pt-loaded nano-sized {010} dominant
anatase rods in the presence of H O vapor. The rods give a
superior activity to P25 TiO nanocrystals in generating CH
4
+ 2H
2
O [E (CO
2
/CH
4
) = À0.24 V vs. NHE,
Fellowship.
2
4
Notes and references
2
1
(a) M. R. Hoffmann, S. T. Martin, W. Choi and
D. W. Bahnemann, Chem. Rev., 1995, 95, 69; (b) H. Tada,
T. Kiyonaga and S. Naya, Chem. Soc. Rev., 2009, 38, 1849;
(c) A. Kudo and Y. Miseki, Chem. Soc. Rev., 2009, 38, 253;
2
4
throughout the whole reaction duration of 10 h, as shown in
Fig. 3c. The deviation of the CO2 conversion rate from
the linear relationship may be caused by the continuously
increased concentration of CH4 in the reaction chamber
during reactions. Systematic studies on the activity dependence
on the amount of Pt cocatalysts suggest that 1 wt% loading is
optimal.
(
(
d) X. L. Hu, G. S. Li and J. C. Yu, Langmuir, 2010, 26, 3031;
e) J. H. Pan, H. Q. Dou, Z. G. Xiong, C. Xu, J. Z. Ma and
X. S. Zhao, J. Mater. Chem., 2010, 20, 4512; (f) Z. G. Zou,
J. H. Ye, K. Sayama and H. Arakawa, Nature, 2001, 414, 625;
(
g) K. Maeda, K. Teramura, D. L. Lu, T. Takata, N. Saito,
Y. Inoue and K. Domen, Nature, 2006, 440, 7082;
h) H. J. Yang, J. H. Yang, G. J. Ma, G. P. Wu, X. Zong,
Z. B. Lei, J. Y. Shi and C. Li, J. Catal., 2009, 266, 165.
2 (a) W. Q. Fang, X. Q. Gong and H. G. Yang, J. Phys. Chem. Lett.,
011, 2, 725; (b) G. Liu, J. C. Yu, G. Q. Lu and H. M. Cheng,
(
2 4
The excellent performance in converting CO into CH of
the {010} dominant rods can be understood as the synergistic
effects of both the unique surface atomic structure and higher
2
Chem. Commun., 2011, 47, 6763.
H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith,
H. M. Cheng and G. Q. Lu, Nature, 2008, 453, 638.
2
CB minimum of {010}. The adsorption of reactant H O and
3
CO molecules on the photocatalyst surface is a prerequisite
2
for the subsequent electron transfer and conversion reactions.
4 J. Pan, G. Liu, G. Q. Lu and H. M. Cheng, Angew. Chem., Int. Ed.,
011, 50, 2133.
2
Theoretically, H O molecules at low coverage can be
2
5
(a) M. Lazzeri, A. Vittadini and A. Selloni, Phys. Rev. B, 2002,
65, 119901; (b) C. T. Dinh, T. D. Nguyen, F. Kleitz and T. O. Do,
ACS Nano, 2009, 3, 3737.
dissociatively adsorbed on the (010) surface with 100% Ti5c
atoms, while the molecules can only be molecularly adsorbed
14a
on (101). Furthermore, the interaction of CO
6
7
8
J. M. Li and D. S. Xu, Chem. Commun., 2010, 46, 2301.
A. S. Barnard and L. A. Curtiss, Nano Lett., 2005, 5, 1261.
T. Sasaki, M. Watanabe, H. Hashizume, H. Yamada and
H. Nakazawa, J. Am. Chem. Soc., 1996, 118, 8329.
2
on the (010)
is predicted to be stronger than that on both (101) and
1
4b
(
001). All these features favor the adsorption of CO
O on (010). Equally important, it has been experimentally
verified that the photoexcited electrons in a more negative CB
2
and
H
2
9 G. Liu, H. G. Yang, X. W. Wang, L. N. Cheng, J. Pan, G. Q. Lu
and H. M. Cheng, J. Am. Chem. Soc., 2009, 131, 12868.
0 G. Liu, C. H. Sun, H. G. Yang, S. C. Smith, L. Z. Wang, G. Q. Lu
and H. M. Cheng, Chem. Commun., 2010, 46, 755.
1
1
3a
have a greater ability to reduce CO
2
.
In the current case, the
electrons from a more negative CB of {010} dominant rods
11 B. Oregan and M. Gra
1
1
¨
tzel, Nature, 1991, 353, 737.
2 J. G. Yu, J. J. Fan and K. L. Lv, Nanoscale, 2010, 2, 2144.
3 (a) T. Inoue, A. Fujishima, S. Konishi and K. Honda, Nature,
979, 277, 637; (b) V. P. Indrakanti, J. D. Kubick and
can effectively reduce CO as indicated in Fig. 3d.
2
Finally, it is useful to discuss the possible growth processes
of the {010} dominant TiO2 rods from lepidocrocite-type
1
H. H. Schobert, Energy Environ. Sci., 2009, 2, 745; (c) S. C. Roy,
O. K. Varghese, M. Paulose and C. A. Grimes, ACS Nano, 2010,
4 4
Cs0.68Ti1.83O /H0.68Ti1.83O . By monitoring the crystalline
4
, 1259; (d) Q. Liu, Y. Zhou, J. Kou, X. Chen, Z. Tian, J. Gao,
S. Yan and Z. G. Zou, J. Am. Chem. Soc., 2010, 132, 14385;
e) S. Yan, S. Ouyang, J. Gao, M. Yang, J. Feng, X. Fan, L. Wan,
structure and morphology evolution of intermediate solid
products with reaction times of 0–24 h (see Fig. S5 and S6,
ESIw), three typical stages can be identified for the formation
(
Z. Li, J. H. Ye, Y. Zhou and Z. G. Zou, Angew. Chem., Int. Ed.,
2010, 49, 6400; (f) N. Zhang, S. Ouyang, P. Li, Y. Zhang, G. Xi,
T. Kako and J. H. Ye, Chem. Commun., 2011, 47, 2041.
4 (a) A. Ignatchenko, D. G. Nealon, R. Dushane and K. Humphries,
J. Mol. Catal. A: Chem., 2006, 256, 57; (b) V. P. Indrakanti,
J. D. Kubicki and H. H. Schobert, Energy Fuels, 2008, 22, 2611.
of the micro-sized TiO rods from Cs0.68Ti1.83
2
4
O : (i) dissolution
(
0–4 h) of Cs0.68Ti1.83O to increase both the concentration of
4
1
soluble titanium species from nil to the critical point for
+
TiO nucleation and the aqueous pH value by releasing Cs ;
2
This journal is c The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 8361–8363 8363